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ABSTRACT

Bilinear synthesis of nonstationary signals impinging
on a multi-antenna receiver has been recently intro-
duced. The distinction in the spatial signatures of the
sources provides a vehicle to reduce noise and source
signal interactions in the time-frequency domain, and
hence improves signal synthesis. In this paper, in addi-
tion to the spatial domain information, we utilize po-
larization diversity for enhanced source time-frequency
signal representations. It is shown that dual-polariza-
tion antennas can be used to mitigate cross-terms via
a combined spatial and polarization averaging. Signifi-
cant reduction in cross-terms can be realized by provid-
ing large spatial diversity, large polarization diversity,
or a combined moderate values of the respective spatial
and polarization correlations.

1. INTRODUCTION

Nonstationary signal analysis can be performed using
linear or quadratic distributions. In the case of quadra-
tic time-frequency distributions, the interactions be-
tween the signal multi-components due to the bilinear
products introduce cross-terms. These terms are unde-
sirable, as they overshadow and obscure the true time-
frequency signatures of the signals [1, 2]. There are
several effective techniques which have been introduced
for cross-term mitigation [1, 3, 4]. However, these tech-
niques are devised for a single antenna receiver and may
not be suited for real time signal processing.

Recent work in sensor signal processing has shown
how to substantially reduce the cross-terms using an-
tenna arrays [5]. In this case, the multi-component
signals arise from the mixture of the mono-component
source signals at each antenna. It is shown that by
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averaging the time-frequency distributions of the sen-
sor data across the array, the spatial separation of the
sources can be utilized to suppress the source cross-
terms without introducing bias or smoothing of the
source auto-terms. This separation is measured by the
spatial correlation of the source spatial signatures. The
latter depend on the source angular position, the mul-
tipath environment, and the array manifold, incorpo-
rating mutual coupling and antenna patterns. Weaker
correlations, in general, yield stronger suppression of
cross-terms. In the case that the sources are closely
separated or the array is of a small aperture, the bene-
fits of the antenna array in enhancing the source time-
frequency representation become limited. When dual
polarized antennas are used, however, the polarization
diversity can relax the conditions on the source spa-
tial resolution, and, in essence, work with the available
spatial diversity of the array for effective suppressions
of cross-terms.

In this paper, we present an analytical framework
in which both polarization and spatial diversities are
integrated and used for nonstationaty array process-
ing. It is shown that by averaging the time-frequency
distributions (TFDs) over the two polarizations across
all the elements of the array, both spatial and polariza-
tion correlations appear as fractional products, multi-
plying the distribution cross-terms. As such, significant
reduction in cross-terms can be realized by providing
large spatial diversity, large polarization diversity, or a
combined moderate values of the respective spatial and
polarization correlations.

2. SIGNAL MODEL

Assume L source signals sl(t), l = 1, ..., L, are incident
on an array with N dual-polarization antenna sensors.
We use [p] and [q] to represent the two orthogonal po-
larizations (e.g., vertical and horizontal polarizations)
at each sensor. The received data for each polariza-
tion is the linear combination of the same polarization
components of the source signals and noise. That is,
the signal received at the nth sensor of polarization i,
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where i = p or q, is

x[i]
n (t) =

L∑
l=1

a
[i]
n,ls

[i]
l (t) + n[i]

n (t), (1)

where a
[i]
n,l represents the propagation coefficient of the

lth source to the nth sensor with polarization i, and
n

[i]
n (t) is the noise component at the same polarization.

The data vector at each polarization, x[i](t), i = p
or q, is expressed as

x[i](t) = y[i](t) + n[i](t)
= A[i]s[i](t) + n[i](t)
= A[i]V[i]s(t) + n[i](t),

(2)

where y[i](t) and n[i](t) are, respectively, the noise-free
data vector and the noise vector, A[i] is the data mixing
matrix, and V[i] = diag[v[i]

1 , · · · , v
[i]
L ], with

v
[p]
l = cos γl and v

[q]
l = sin γle

jηl (3)

representing the coefficients of the lth source for the p
and q polarizations. In (3), γl determines the magni-
tude ratio and ηl determines the phase difference be-
tween the two polarizations. Without loss of generality,
it is assumed that the norm of the spatial signature vec-
tor a[i]

l = [a[i]
1,l, · · · , a

[i]
N,l]

T for each source’s polariza-
tion is N , where l = 1, · · · , L, i = p, q, and T denotes
transpose. From (3), it is clear that vl = [v[p]

l v
[q]
l ]T has

a unit norm. Thus, the strength of the source signals
is absorbed in the magnitude of sl(t).

The combined data vector received at a dual-polari-
zed antenna array is expressed in the following vector
format

x(t) =
[
x[p](t)
x[q](t)

]
=

[
A[p]V[p]

A[q]V[q]

]
s(t) +

[
n[p](t)
n[q](t)

]
. (4)

For each polarization, the auto- and cross-polariza-
tion spatial time–frequency distribution (STFD) in dis-
crete-time is given by

Dx[i]x[k](t, f)

=
∞∑

u=−∞

∞∑
τ=−∞

φ(t − u, τ)x[i](t +
τ

2
)(x[k](t − τ

2
))He−j2πfτ ,

(5)
where t and f are the time and the frequency variables,
respectively, φ(t, τ) is the time-frequency kernel, and
superscript H denotes transpose conjugation. Each of
i and k takes either value of the polarization index p
or q.

The auto- and cross-polarized STFDs can be com-
bined to form the following 2N × 2N spatial polariza-

tion time-frequency distribution (SPTFD) matrix,

Dxx(t, f)

=
∞∑

u=−∞

∞∑
τ=−∞

φ(t − u, τ)x(t +
τ

2
)xH(t − τ

2
)e−j2πfτ .

(6)
The noise elements are modeled as stationary and white
complex Gaussian processes with zero mean and vari-
ance σ2 in each polarzation, i.e.,

E
[
n(t + τ)nH(t)

]
= σ2δ(τ)I2N , (7)

where δ(τ) is the Kronecker delta and I2N denotes the
2N × 2N identity matrix.

3. ARRAY AND POLARIZATION
AVERAGING

Similar to the array averaging of the TFDs across the
array sensors in [5], the joint array and polarization
averaging of the TFDs is defined as the averaging of
TFDs across all the array sensors and both polariza-
tions. That is,

D(t, f) =
1
N

N∑
n=1

q∑
i=p

D
x
[i]
n x

[i]
n

(t, f). (8)

Without the noise, D(t, f) becomes

D(t, f) =
1
N

N∑
n=1

q∑
i=p

L∑
l=1

L∑
m=1

(
v
[i]
l a

[i]
n,l

) (
v[i]

ma[i]
n,m

)∗
Dslsm(t, f),

(9)
where Dslsm(t, f) is the cross-TFD between sl(m) and
sm(t). Denote

al =
[(

v
[p]
l a[p]

l

)T (
v
[q]
l a[q]

l

)T
]T

= [v[p]
l a
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l a

[p]
N,l, v

[q]
l a
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[q]
l a

[q]
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T

(10)
as the joint spatial-polarization signature of the lth sig-
nal, l = 1, · · · , L, and

βl,m =
1
N

aH
mal = (v[p]

m )∗v[p]
l β

[p]
l,m + (v[q]

m )∗v[q]
l β

[q]
l,m

=
1
N

(
(v[p]

m a[p]
m )H(v[p]

l a[p]
l ) + (v[q]

m a[q]
m )H(v[q]

l a[q]
l )

)

=
1
N

N∑
n=1

q∑
i=p

(
v
[i]
l a

[i]
n,l

)(
v[i]

ma[i]
n,m

)∗

(11)
as the spatial-polarization correlation coefficient be-
tween sources l and m, where β

[i]
l,m = (1/N)(a[i]

m)Ha[i]
l
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is the spatial correlation between sources l and m at
polarization i. Then, D(t, f) can be expressed as

D(t, f) =
L∑

l=1

L∑
m=1

βl,mDslsm(t, f). (12)

The above equation shows that D(t, f) is a linear
combination of the auto- and cross-polarization TFDs
of all signal arrivals. It is straightforward to show that
for the lth and the mth sources,

|βl,m| ≤ 1, if l �= m and βl,m = 1, if l = m, (13)

indicating that the constant coefficients in (12) for TFDs
with the same sensor and polarization are always greater
than, or at least equal to, those for different sensors or
polarizations. For sources with distinct polarizations
or distinct spatial signatures, |βl,m| � 1, leading to
significant suppression of cross-terms, and thereby en-
hancing the signal signature estimation.

When the array response is the same for both or-
thogonal polarizations, then a[p]

l = a[q]
l . In this case,

eqn. (11) can be simplified to

βl,m =
(

1
N

(a[p]
m )Ha[p]

l

) (
vH

mvl

)
= δl,mαl,m, (14)

where δl,m and αl,m, respectively, represent the spa-
tial and polarization correlation of sources l and m. A
small value of βl,m can be realized with either large
spatial diversity or large polarization diversity, or with
moderate values of their respective correlations.

The t-f kernel in eqns. (4) and (5), which intro-
duces temporal averaging of the local autocorrelation
functions at consecutive time samples, can be selected
to reduce the TFD noise effect for the single antenna
case. The combined array and polarization averaging
reduces the cross-terms and noise variance beyond that
achieved in a single antenna (polarization) case without
compromising the auto-term resolutions. Even without
kernel smoothing, the averaging in eqn. (12) decreases
the noise variance and its interaction with the signal
components.

4. SIMULATION RESULTS

In this section, we provide computer simulations to
demonstrate the improvement gained by the proposed
technique in the reduction or elimination of cross-terms
and signal synthesis. Two high-order frequency modu-
lated signals are considered on a uniform linear array
consisting of four dual-polarization dipoles. The length
of the signal sequence is set to N = 256. The additive
noise at different sensors and polarizations is uncor-
related, zero mean, Gaussian distributed, and white.
The input signal-to-noise ratio (SNR) is 3 dB, and the
interelement spacing is half wavelength.
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Fig. 1. EDTWVD computed from the signal received
at the first vertical polarization antenna.

Fig. 1 shows the extended discrete-time Wigner-
Ville distribution (EDTWVD) [6] of the data received
at the vertically polarized antenna. With the presence
of high-level noise and close t-f signatures, it is very
difficult to identify these t-f signatures when only a
single-polarization sensor is used.

Next, we consider the result when array and polar-
ization averaging is applied. Three scenarios are con-
sidered. The first one represents a situation where the
spatial correlation between the two signals is low (i.e.,
large spatial diversity), whereas in the second scenario
the polarization correlation is low (i.e., large polariza-
tion diversity). In the third scenario, both spatial and
polarization correlations asume moderate values. The
parameters are illustrated in Table I. All of the above
three scenarios show good cross-term reduction perfor-
mance. As a result, the signatures of the two signals
can be clearly identified and separated. Notice that the
array averaging and polarization not only suppresses
the cross-terms, but also reduce the noise variance and,
as such the signal-to-noise ratio (SNR) is enhanced [5].

With the clearly separated time-frequency signa-
tures of the two signals, we can proceed to mask and
synthesize the signal waveforms [5]. With a mask ap-
plied to one signal and using standard signal synthesis
techniques, a recovery of a high signal quality is ex-
pected. Fig. 5 shows the TFD of the synthesized signal
waveform of the first signal, synthesized from the aver-
aged TFD of Scenario C.

5. CONCLUSION

Polarization averaging of time-frequency distributions
allows effective cross-term reduction and auto-term en-
hancement, aiding to source time-frequency signature
estimations and waveform recovery. Averaging TFDs
across polarizations can be performed concurrently with
TFD averaging across the array, thereby utilizing both
spatial and polarization diversities in syntheses of non-
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stationary signals. Both types of diversity appear as
fractional product factors multiplying the TFD cross-
terms. Significant reduction of cross-terms can then
be realized by a large diversity of either type or mod-
erate diversities of both. In particular, polarization
averaging can be applied alone if the difference in the
source spatial signatures is insufficient for cross-term
reduction, or the receiver is not equipped with antenna
arrays.

Table I. Signal Paramaters

Scenario DOA (deg) |δ1,2| Γ (deg) |α1,2|
Scenario A -30, 30 0.000 30, 40 0.985
Scenario B 30, 40 0.879 -45, 45 0.000
Scenario C 30, 60 0.343 -5, 45 0.642
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Fig. 2. EDTWVD averaged over sensors and
polarizations (Scenario A).
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Fig. 3. EDTWVD averaged over sensors and
polarizations (Scenario B).
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Fig. 4. EDTWVD averaged over sensors and
polarizations (Scenario C).
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Fig. 5. EDTWVD of the synthesized waveform of the
first signal.
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