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ABSTRACT

We introduce the time-frequency-moving-average (TFMA) model
as a highly parsimonious time-varying MA model formulated in
terms of time-frequency (TF) shifts. For estimation of the TFMA
model parameters, we develop a computationally efficient nonlin-
ear technique based on a novel complex TF cepstrum, TF cepstral
recursions, and an underspread approximation. Simulation results
demonstrate significant performance advantages of the proposed
TFMA model and parameter estimation technique over an existing
method for time-varying MA modeling and estimation.

1. INTRODUCTION

Autoregressive (AR) and moving average (MA) models for random
processes are useful in many signal processing applications. Time-
varying models are applicable to a wider class of problems than are
their time-invariant counterparts. In particular, time-varying MA
models are formulated as (see e.g. [1] and references therein)

M
=Y buln]eln—m]

m=0

M
— Zobm[n] (S™e)[n], €))

where the by,[n], m =0, ..., M (with b,[n] > 0) are the time-varying
MA parameters, M is the MA model order (maximum delay), e[n]
is stationary white noise with unit variance, and S denotes the time-
shift operator defined as (Sx)[n] = x[n—1]. We can interpret (1)
as the input-output relation x[n] = ¥M_ H[n,m] e[n — m)] of a linear
time-varying (LTV) system—known as the innovations system—
with impulse response H|[n,m] = b,,[n]. A cepstral technique for
estimating the parameters by, [n] has recently been developed [2].

Here, we propose the highly parsimonious time-frequency (TF)
MA model that complements the TFAR model presented in [3]. The
TFMA model is introduced in Section 2. In Section 3, we define
the complex TF cepstrum and derive a TF cepstral recursion which
is used in Section 4 to develop a computationally efficient parame-
ter estimation technique. Simulation results presented in Section 5
demonstrate significant performance advantages of our estimation
technique over the technique proposed in [2].

2. THE TFMA MODEL

In the following, the signal x[n] will be considered on the interval
[0,N—1] with N even. Motivated by the observation that LTV sys-
tems cause frequency shifts of the input signal in addition to time
shifts, we define the TFMA model of order (M,L) as (see Fig. 1)

x[n] = Z Z b, ( (M'S™e) z 2 b, eJN —m,
m=0[=—L m=0[=—L
where M denotes the frequency-shift operator defined as (ML.x)[n] =

el %"x[n} and L is the spectral (Doppler) model order. Note that the
parameters b, , do not depend on time 7, and that the time-invariant
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Figure 1: Block diagram of the TFMA model of order (M, L).

MA model [4] is reobtained for L = 0. Furthermore, the TFMA
model and the time-varying MA model (1) are related via the basis
expansion [1]

L
j2n
buln] = 3, b, e/ ¥ (3)
I=—L
We assume that b, , is an autocorrelation sequence such that b [n] >
0. We also suppose that the TEMA process x[n] is underspread [5]

in the sense that 4(2L+1)(M+1) < N, i.e., the number of TFMA
parameters b, ; in (2) is at most N/4.
The input-output relation of the LTV innovations system under-

lying the TFMA model can be written as a superposition of TF-
shifted versions of the input signal [6]:

| N/2-1 Nj2-1

=5 X X Sl en-ml. @

m=—N/21=—N/2

Here, S[m, ] is the system’s spreading function (SF) defined as!

S[ml]—ZHnme]N *]FH[nm] ®)

=0 n—l

Comparing (4) with (2), we see that the SF of the innovations sys-
tem essentially equals the TFMA parameters b, ;

_ [Nb,,,, (m1l)e[0,M]x[-L,L]

Slm.1) = {0, ~ otherwise. ©)

A TFMA model will be called minimum phase if the underlying

innovations system is minimum phase, i.e., if H[n,m] is minimum

phase in m for all n, or equivalently (cf. (5)) if S[m,!] is minimum
phase in m for all /.

'When using the discrete Fourier transform (DFT) F or the inverse DFT
F~1, the function being transformed is assumed periodic with period N.
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3. TF CEPSTRUM AND TF CEPSTRAL RECURSION

As a basis for the parameter estimation technique proposed in Sec-
tion 4, we now introduce the complex TF cepstrum (CTFC) and
derive a TF cepstral recursion. This generalizes classical cepstrum
theory [7, 8] to the time-varying case. We also discuss the relation
of the CTFC with the evolutionary cepstrum introduced in [2].

3.1. The Complex TF Cepstrum

We consider a possibly noncausal LTV system (i.e., H[n,m| and
S[m, ] may be nonzero for m < 0). A time-varying transfer function

can be defined as the two-sided 2-D z-transform [9] of the SF:
| N2-1 Nj2-1
L(zy,2,) é N 2 2 S[m, ”2112 : 0
mf—N/Z I=—N/2
Note that L(z,,z,) is analytic for all z,, z,. We assume that L(z,,z,)
#0inaregion Z = {(z;,2,)|(1—¢, < |z < 1+¢&)A(1—g <
|z,| < 1+¢€,)} with some positive constants €,€,; this guaran-
tees that log (L(z,,2,)) is analytic in Z. We then define the CTFC
s[m, 1] implicitly as (cf. [10])

2 2 sim, 1)z 2™ ®)

N, e

log (L(zl 722

The CTFC is a function of delay m and Doppler shift /; it is causal
(i.e., s[m,l] = 0 for m < 0) if and only if the SF S[m, [] is minimum
phase (and, thus, also causal) with respect to m for all [ (cf. [7]). If
the system is time-invariant, then S[m, ] = 0 for [ # 0 and thus the
CTFC reduces to the classical complex cepstrum [7, 8].

To compute the CTFC using DFTs, we consider

1 N/2-1 N/2-1

J'ZW”” ) Z Y Smleijm ")

N2 N/2

Lin,k| = L(e

)
for (n,k) € [0,N—1] x [0, N—1]. Here, n and k are discrete time and
discrete frequency, respectively. Equation (8) yields

_2 Zmleijmnl)

n’17—°°l_—oo
| N2-1 Nj2-1

= Z Y s[mleJNkm”l)

N, = N/21=-N/2

log (L[n,k})

where $[m,!] £ I Z‘f:_ws[m—i-iM I+ jN] is an aliased version
of the CTFC s[m,!]. This aliased CTFC can hence be calculated as
1 N—IN—-1

Sm.1] = %, 2 log (L[n,k]) e/ % (mk=tn)
n=0 k=
=F F 'l F Flsil 10
n—l k—m o8 <m~>kl’—>n [m ]) ( )

where (9) has been used. Aliasing is negligible (i.e., §[m, ] & s[m, ]
for (m,l) € [-N/2,N/2—1] x [-N/2,N/2—1]) if s[m,l] is suffi-
ciently decayed for (m,l) ¢ [-N/2,N/2—1] x [-N/2,N/2—1].
3.2. The TF Cepstral Recursion

We now assume a TFMA model that is minimum phase, so that
s[m,1] =0 for m < 0. Inserting (7) into (8) and using (6), we obtain

M L ; 1
10g(2 x bmﬁzzlzzm) =N -

m=0[=—L

[m 1}21Z2

oo

HMX
lI‘MX

07

Differentiation with respect to z; 1 gives

M L R 1 & oo M L , o
2 2 mb,, 1212, =N Z 2 Z Z m bm,ls[m7l]
m=1[=—L m'=11l'=—co m=0 [=—

o _ /
. le+l 3 m—m +1.

By matching the powers of z; and z,, we obtain the relation

1 M L
mbm,l = N Z 2 (mim/)bmr"l/s[m*ml,lflq,
m'=01'=—L

With s[m,l] = 0 for m < 0, this relation can be used to recursively
calculate the TFMA parameters b, ; as

1 m—1 L m—m'

bmf,zfs[m—m’,l—l’}, m=1,....M.

This recursion is initialized by bo.l’ which is obtained as follows.
We can write H|n,m| = byn] H'[n,m], where H'[n,m] is monic
(H'[n,0] = 1). Hence, the CTFC s[m, ] of H[n,m] equals the sum of
the CTFCs of b [n] and H'[n,m]. Since H'[n,m] is monic, its CTFC
vanishes for m = 0, and thus the CTFC of b[n] equals s[0,]. In-

verting the z-transform in the implicit CTFC definition (8) on the
unit circle for m = 0, we then obtain after some calculations

bo,l = N/ exp(

1
~— F exp< F~
N n—l I'—n

[O,ll} ejz:rl’é) e—j2ﬂl§ dé

I'=—oo

15[0,1/]) . (12)

3.3. Relation to the Evolutionary Cepstrum

In [2], the evolutionary cepstrum (EC) of a possibly noncausal, non
minimum phase LTV system was introduced. The EC is based on
Zadeh’s time-varying transfer function [11]

N/2—1
Li(z) = Y, Hnm]z ™
m=—N/2

We note that L, (z) = L(ej%ﬂ",z) (cf. (7) and (5)). Assuming that
for all n, L,(z) # 0 for z € Z where Z = {z]1 —e < [z] < 1+¢}
with a positive constant £, the EC h[n,m] is defined implicitly as

log (L, Z hln,m)z7™.

m=—oo

If the system is time-invariant, then H[n,m] = H[m] and thus the
EC reduces to the classical complex cepstrum.
An aliased version of the EC can be computed as

7 _ -1 ’
hln,m] = kEm log (mEkH[n,m ]) . (13)
With (5), we can rewrite (13) in terms of the SF S[m, {]:

n,m) = F! log< FFlS[,l ])
k—m k l'—n
Comparing with (10), we see that the (aliased) EC is the inverse
DFT of the (aliased) CTFC:
h[n,m)] :l]F’lsN[mJ]. (14)
—n
Let us now reconsider the general time-varying MA model (1),
which is assumed such that the zeros of L,(z) are within the unit
circle for all n. Based on the EC, the followmg recursion for the
time-varying MA parameters by, [n} has been derived in [2]:
m—1

m—m’

bm|n] = Jn] hnym—m'], m=1,....M, (15)

m
m=0 M
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initialized by

byln] = M0l (16)
(however, in [2] a different initialization was used). With (14), one
can show that within the aliasing approximation, our CTFC-based
recursion (11), (12) can be derived from the EC-based recursion
(15), (16) if the TFMA basis expansion (3) is imposed on the time-
varying MA parameters b,,[n]. However, there are major differ-
ences regarding the number of parameters by, [n] and b, , and the
computational complexity of the two recursions, as discussed next.

3.4. Computational Complexity
The TFMA model (2) uses (2L + 1) (M + 1) parameters b, ;. Cal-

culation of the CTFC requires 4N FFTs of length N and N? com-
plex logarithms. The recursion (11) uses ¢ (L>M?) multiplications.

Thus, TEMA parameter calculation requires ¢ (NlogN +L>M?/N)
multiplications plus N complex logarithms per signal sample.

The general time-varying MA model (1) uses N(M + 1) parame-
ters by,[n]. For EC calculation, 2N FFTs of length N and N? com-
plex logarithms need to be computed. The recursion (15) requires
o (NM2) multiplications. Hence, the overall complexity per signal
sample is O(NlogN +M?) plus N complex logarithms.

It is thus seen that for typical situations where L?> < N, TEMA
parameter computation based on the CTFC recursion is far less
numerically intensive than parameter computation for the general
time-varying MA model based on the EC recursion. The reason is
the smaller number of model parameters to be computed.

4. PARAMETER ESTIMATION

We now discuss estimation of the TFMA parameters b,, , from one
or several observed realizations of the nonstationary process x[n].

4.1. The CTFC of a Nonstationary Process

The expected ambiguity function (EAF) of a nonstationary process
x[n] with correlation Ry[n, m] = E{x[n] x*[n—m] } is defined as [5]

_ N-1 .
Adm,1) & Y, Ri[n,m] IR = Fl Ry[n,m].
n=0 n—,
This is the SF of an LTV system with impulse response Ry [n,m] (cf.
(5)). The correlation of a TFMA process is given by

M L L P
Rx[n,m} = 2 2 Z bm’.l bfn’ﬂn,l’ ejw[(lil Intl m]7
m=01=—LI'=—L
and thus
- M L 227 (1
Adm ) =N Y ¥ by e ¥ 0" an)
m'=01V=—L
It follows that Ay[m,l] = 0 for (m,l) & [-M,M] x [-2L,2L]. We
next consider the two-sided 2-D z-transform of Ay[m,!] (cf. (7)),
| N2-1 N/2-1
> Adm ™. (18)
m=—N/21=—N/2

A
PX(Z] ,Zz) = ﬁ
Evaluation of P, (zl ,%,) on the unit bicircle yields (cf. (9))

Pink] £ P (/¥ 1T = F F 1A m1],  (19)
m—k l—n
which can be interpreted as a time-varying power spectrum of x[n]
[5]. We then define the CTFC of the process x[n], denoted by
ax[m,l], implicitly as (cf. (8))

2 Z ax[m, Z]lez

N, = =

An aliased version of the CTFC can be calculated as (cf. (10))

log (P(zy,2,)) =

aml) = F - 110g<]F F- A[ml]> 20)

n—l k—m '—k l'—n

‘We now assume that the product of maximum delay M and max-
imum Doppler L satisfies ML < N, i.e., both the innovations sys-
tem and the process x[n] are strongly underspread [5]. It then fol-

lows that e/ % ("0 ~ 1 within the summation range of (17) since
[1— e/ ¥ U=Dm| = 2|sin (Z ('~ 1)m)| < 4nML. Hence, (17) can
be approximated by a srmple 2-D convolution of bm‘l with b*

Aylm, 1] ~ Zb,,,m ol 21

m'=01'=—L
With (6), (7), and (18), this yields Px(zl,zz)

and further log (Py(z;,2,)) ~ log (L(z;,2,)) +
Thus,

NL(ZUZZ)L*(Z"ZI)
+ [log (L(5 DR
ax[m,l] =~ s[m,l] + s*[-m,—1], (22)

where, as before, s[m, ] is the CTFC of the innovations system.
For a minimum phase TEMA model, s[m,!] = 0 for m < 0, and
thus (22) implies

s[m,1], m >0
ay[m,l] =~ < 2s[0,1], m=0
s [-m,—1], m<O0

(note that s*[0, —/] = 5[0,]). Thus, the TF cepstral recursion (11)
can approximately be written in terms of ay[m, ] as

1 m—1
ml 2 Z ,l,ax[mfm',lfl/]7 m=1,....M,
m =00!'=
(23)

and the expression (12) for the initialization parameter b, ; becomes

1 1 -1 !
by, ~— F = F~a.0,l']). 24
01 N n—l xp <2 I'—n ax[ ’ }) 4
With (20), the relations (23) and (24) show how to calculate the
TFMA parameters b, from the second-order statistics of x[n] (EAF
Ay [m,I] or, equivalently, correlation Ry[n,m]). They allow to esti-
mate the b, ; from one or several realizations of x[n] if Ax[m,[] is

replaced by a suitable estimate. We note that a similar estimation
procedure can be developed for EC-based parameter estimation.

m,l

4.2. Estimation of the EAF

Let us assume that I realizations x;[n] have been observed. We pro-
pose the EAF estimator (cf. [3,12])

I
Adm, 1) = Wm0 Y, Ay [m,1], (25)
where =1
N—1 .
Ay [m, 1] £ Y x;[n]x; [n—m]e” Jwin — Fl{xi[n]x;‘[n—m}}
n=0 n—

is the ambiguity function [12] of x,[n] and ¥[m, ] is a 2-D weight

function that is designed such that it effectively covers the sup-

port region of Ay[m,!] and the corresponding nonparametric spec-

trum estimate Py[n,k] = F ‘l F LA, [m, 1] (cf. (19)) is nonnegative.
m— —n

Such a weight function can be constructed as [13]
K
[] :Z‘lyjAgf[m’lL (26)

where the . are the K largest positive eigenvalues of the LTV sys-
tem whose SF equals the indicator function of the EAF’s support
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Figure 2: Normalized MSE (in dB) of our CTFC-based parameter
estimator (solid line) and of the EC-based parameter estimator [2]
(dashed line) for a TFMA process, plotted versus (a) signal length
N, (b) delay model order M, and (c) Doppler model order L.

region and the g f [n] are the associated eigenfunctions. This presup-
poses knowledge of the EAF’s support region (i.e., of M and L).

5. SIMULATION RESULTS

We next assess the performance of our TFMA parameter estimator
by means of numerical simulations.

TFMA Processes. We first consider TFMA processes with given
parameters b, ,, delay model order M € {0,1,...,5}, Doppler

model order L € {0, 1,2,3}, and signal length N € {32, 64,128,256,
512} (note that the process is more underspread for larger N and/or
smaller delay-Doppler order product ML). We applied our TFMA
parameter estimator described in Section 4 by estimating the EAF
from a single realization (I = 1) according to (25), (26) and evalu-
ating the cepstral recursion (23), (24) based on the true model order
(M,L). The normalized MSE of the resulting parameter estimates
(obtained by averaging over 50 such experiments) is shown as a
function of N, M, and L in Fig. 2. For comparison, we also show
the MSE obtained with the EC-based parameter estimator [2] us-
ing the improved initialization (16). Note that in contrast to our
estimator, the EC-based estimator does not require or make use of
knowledge of the Doppler model order L.

Our estimator is seen to outperform the EC-based estimator for
all N, M, and L, with gains between 2 and 5 dB. The performance
of both estimators improves with increasing N and decreasing M
and L. Thus, as expected, parameter estimation is more accurate
for a model with slower time variations or smaller maximum delay.

Non-TFMA Process. We next consider estimation of the time-
varying spectrum Py [n, k] (see (19)) of a nonstationary process that
does not conform to the TFMA model. The true spectrum Py[n, k]
is depicted in Fig. 3(a). Fig. 3(b) shows a TFMA model based

. . 5 1 2
parametric spectrum estimate? P[n,k] =[N F F~1bh |- Here,
m—k l—n m,

b, , denotes the TFMA parameter estimates obtained from a sin-

gle realization x[n] via our CTFC-based estimator using (optimum)
model orders (M,L) = (2,2). Finally, Fig. 3(c) shows a paramet-

2 where by, [m] denotes

ric spectrum estimate Py[n,k] = | F k@m [n]
m—,

the time-varying MA parameter estimates obtained from a single
realization x{n] via the EC-based estimator using (optimum) model
order M = 1. The normalized MSE of the spectrum estimates (ob-
tained by averaging over 50 experiments) was 9.6 % for the CTFC-
based estimator and 19.0% for the EC-based estimator; note that
this MSE also includes a systematic modeling error.

6. CONCLUSIONS

The time-frequency-moving-average (TFMA ) model for nonstation-
ary processes introduced in this paper has the advantage of being
both physically intuitive (since it is formulated in terms of Doppler

2This spectrum estimate is based on the approximate expression
Pk ~|NF F'b, | that follows from (19) and (21).

m—k l—n

(a) 127
2
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—128
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(b) 127
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Figure 3: Parametric time-varying spectrum estimation: (a) True
spectrum, (b) CTFC-based spectrum estimate, and (c) EC-based
spectrum estimate.

shifts) and highly parsimonious. Based on a novel complex TF
cepstrum, we derived a TF cepstral recursion that allows reliable
and computationally efficient estimation of the TFMA parameters.
Simulation examples illustrated the excellent performance of our
model and estimator and their advantage over the evolutionary cep-
strum approach proposed in [2]. The development of an automated
procedure for TFMA model order selection and the extension of
our parameter estimation technique to noisy observations are inter-
esting topics for future research.
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