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ABSTRACT

We present a new zero-crossing based algorithm for de-
composing a bandpass signal into the amplitude modulation
(AM) and freqeuency modulation (FM) components. In this
sequential algorithm, the FM component is first estimated
using zero-crossing instant information in a k-Nearest Neigh-
bour (‘k-NN’) framework. The AM component is estimated
by coherent demodulation using a time-varying lowpass fil-
ter that uses the estimated instantaneous frequency. Simu-
lation results show that the proposed algorithm gives more
accurate envelope and frequency estimates compared to the
Discrete-Energy Separation algorithm (DESA) which uses
the Teager energy operator. Using the proposed approach on
bandpass filtered speech and music we can extract the fine-
structured modulations that occur on a micro-time scale,
within an analysis frame.

1. INTRODUCTION

Most naturally occurring signals are a consequence of time-
varying systems/processes and therefore have embedded in
them, time-varying attributes such as envelope and frequency.
Extracting these attributes on an instantaneous basis is im-
portant both from an analysis and synthesis perspective. In
speech signals, continuous movements of the articulators
activated by a time-varying excitation causes the spectral
content of the signal to change continuously. Music sig-
nals are also nonstationary and their time-varying charac-
teristic is mostly a consequence of the time-varying ‘ef-
fective resonator dimensions’ (e.g., Flute) or time-varying
string lengths (e.g., Indian Veena, Guitar, Violin). Essen-
tially, the signal in such a case can be modelled as a sum
of generalized sinusoids, i.e., sinusoids with ‘continuously’
time-varying amplitudes and frequencies as follows:

M
s(t) = ZAi(t)sz’n(m(t)) (1)

where A;(t) is the instantaneous amplitude (IA) and ¢;(t) is
the instantaneous phase (IP). The instantaneous frequency
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(F) is defined as f;(t) = 5= d%t(t). The number of such
AM-FM components, M, is generally unknown and esti-
mating the IA and IF directly from s(t) is not straightfor-
ward. However, we can use the fact that a bandpass sig-
nal can be represented using an AM-FM combination. As
a result, decomposing a given signal into a sum of several
bandpass signals will render the AM-FM model applicable
on every subband. Estimation of A and IF can then be per-
formed on each subband. The well known Hilbert transform
method for IA and IF estimation does not always give mean-
ingful and physically relevant estimates and hence the need
for alternative approaches.

In this paper, we show how the modulations can be cap-
tured by using the zero-crossing (ZC) information of the
bandpass signal. Equispaced ZC instants indicate that the
bandpass signal has no frequency modulation. On the other
hand, nonuniformly spaced successive ZC instants are an
indication of a modulated carrier. Physically realizable en-
velopes and frequencies are positive and hence the envelope
does not interfere with the ZCs. Thus, the envelope and fre-
quency information get separated very effectively in the ZC
domain. One can therefore, perform frequency estimation
first using the ZC information which can then be used to ex-
tract the envelope by time-varying coherent demodulation.

2. ALGORITHM

Consider a single component x;(t) = A;(t)sin(¢;(t)) of
(1) obtained by bandpass filtering s(t). To estimate A ;(t)
and f;(t), given z;(t) (henceforth, the subscript ¢ shall be
dropped for the sake of brevity), we develop a sequential
algorithm to first perform frequency estimation followed by
envelope estimation. This is possible because frequency es-
timation is based on ZCs which is unaffected by the instan-
taneous amplitude.

2.1. Frequency estimation

Consider the signal z(t) = A(t)sin(¢(t)) over an observa-
tion interval, [0, 7"]. Denote the set of ZC instants of x(t),
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Z ={t;,0<j < L,>z(tj) = 0}. Corresponding to these
time-instants, we denote the instantaneous phase values as
® = {¢(t;) = jm,0 < j < L}, where the assignment
¢(to) = 0 is arbitrary and does not affect IF estimation.
Thus, by considering the ZC instants of x(t), we get points
on the instantaneous phase function. Assuming a model for
the IP, we can perform interpolation to estimate the IF at a

desired time instant ¢ € [0, 77].
»

For polynomial IF, we can write the IP as ¢(t) = Y4 _, cxt*.

The coefficients {cy, k = 0,1,2,...,p} are estimated by a
least squares fit to the data sets, Z and ®. Define a cost
function

L
Cle) =Y 1o(ty) - c'eyf? @)

j=0
wherec = [co c1 ... ¢y]andthevector,ej = [1 ¢; ... 5]

(" denotes the transpose operator). Minimizing the cost func-
tion with respect to ¢ yields the optimum coefficient vector
=[5 ¢, given by ¢* = (H'H)~"H'® where
& is a column vector whose j" element is ¢(¢;) = jr and
H is a matrix whose 5 row is eg. Having obtained the op-
t/i\mum coefficient vector, we can estimate the IP and IF as
o(t) = Y h_ocith and f(t) = 5= 30 kepth ! respec-
tively.

In practice, we deal with sampled signals, (i.e., z[nT]
instead of z(¢), where T is the sampling period) from which
we need to estimate the ZC instants which, in general, do
not coincide with the sampling instants. We can localize
a zero-crossing by comparing the sign of successive sam-
ples, i.e., if z[mTs]z[(m + 1)T§] < 0 then z(t) has a zero-
crossing in (mT,(m + 1)T§). The actual ZC may be esti-
mated iteratively to a desired degree of accuracy by using
bandlimited interpolation and a bisection approach similar
to that used in root-finding problems.

To illustrate the performance, we consider a phase-only
signal with a quadratic IF. The estimated IF and the IF er-
ror are shown in Fig. 1[a] and [c]. The sampling period 7',
was normalized to unity and an IP with p = 3 was used.
Even if higher values of p are used, the increase in error due
to over-fitting will be negligible because the data are con-
sistent and free from external noise. The accuracy of the
proposed algorithm is very high; the errors are of the order
of 10~° which are negligible.

In most applications, the functional form of the IF may
not be known. The only apriori information available could
be the smoothness of the IF. In such a case, we can still
use the above algorithm but, on a short window basis i.e.,
we can perform ‘local’ polynomial fitting as opposed to a
global one which employs the full data. We employ a k-
nearest neighbour (k-NN) approach for estimating smooth
IF. If the estimate of the IF is desired at any point ¢, we
identify k elements in Z that are nearest neighbours to ¢
in Z. We use the Euclidean distance metric to identify the
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Fig. 1. Frequency estimation using ZCs: [a] Estimate of
N2
IF given by f[n] = 0.125 + 0.3 2) ,0<n <N -

ﬂ)2
1, N = 512, [b] Estimate of IF giver? by f[n] = 0.2250 +
0.04¢0s(0.02n) + 0.14¢0s(0.07n),0 < n < N —1,N =

512).

nearest neighbours. Associated with these k ZC points, we
have k IP values. We perform a p** order interpolation to
these data sets to estimate the IF. An interesting feature of
this algorithm is that it is automatically density adapted in
the sense that if the density of ZCs is larger (higher IF), then
the effective window size encompassing k data points will
be small and if the density of ZCs is small (lower IF), then
the effective window size will be large. Thus, the k-NN ap-
proach adapts the window length to the density of the data.

It was found empirically that p = 3 works satisfacto-
rily for a variety of IF. Also of importance is the choice of
k. Small k£ may produce estimates with lot of fluctutations
while large k may give over-smoothed estimates. A statisti-
cal adaptation procedure to find the optimum £ is discussed
separately [1].

The IF estimate using the k-NN algorithm for a sum of
sinusoids IF is shown in Fig. 1[b]. The error is shown in
Fig. 1[d]. p = 3 and k£ = 11 were used in the simulations.
It can be observed from the plots that the error is of the order
of 1073, which is negligible keeping in mind the frequency
variation within the window.

2.2. Envelope estimation

The envelope estimation is achieved through coherent de-
tection of the signal using the estimated IF. Since the IF is
time-varying, we need to perform time-varying (TV) filter-
ing for coherent detection. The TV filter is specified as an
operator P acting on a signal x(t) as follows [2]:

+oo T T
(Pw)(t):[ W+ 5ot — Dw(rat +1)dr G)
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Fig. 2. AM and FM decomposition using ZC-AM/FM.
The signal, z[n] = [1 + 0.755in(0.06125n)][sin(Fn +
dsin(ggn + 7)),0 <n < N — 1, N = 512. [a]envelope
estimate,[b]frequency estimate,[c]error in envelope esti-
mate,[d] error in frequency estimate.

where w(7) is a window function and h(t + %,t — %) is
defined as:

T T 1 [t .
e N JjwT 4
h(t+ 2,t 2) - /_OO L(t,w)e!"dw  (4)

~

where L(t,w) = 1 for |w| < 27 f(t) and zero otherwise.
Design of L(t,w) requires the IF estimate, f(t). Let the
IP estimate be denoted by g(t). The IP error is therefore
0p(t) = o(t) — (Z(t). The in-phase and quadrature com-

ponents z;(t) = (t)sin($(t)) and z,(t) = z(t)cos(H(t)),

after TV lowpass filtering, give, (Px;)(t) = 0.5A(t)cos(dp(t))

and (Pzg)(t) = 0.5A(t)sin(dp(t)) respectively. There-
fore, we have A(t) = 2,/[(Pz;)(t)]*> + [(Pz4)(t)]?. Since
an ideal filter is impractical, the TV impulse response length
is truncated using a finite duration w(7) which will result in
an estimate A\(t) For implementation purpose, we use a
discrete-time version of the above equations. Henceforth,
we refer to the new algorithm as the zero-crossing based
AM-FM decomposition algorithm (ZC-AM/FM).

To illustrate AM and FM estimation by the ZC-AM/FM
approach, we take an AM-FM signal, sinusoidally modu-
lated in both amplitude and frequency. The AM-FM signal
is multiplied with a trapezoidal window which gradually ta-
pers the signal towards the ends to minimize truncation er-
rors. The results of AM and FM estimation are shown in
Fig. 2. The AM and FM errors are of the order of 10 2 and
10~ * which are negligible.

3. COMPARISON WITH DESA

In this section, we compare ZC-AM/FM with the discrete-
energy separation algorithm (DESA-1) [3]. For this purpose

ZC-AM/FM DESA-1

Fig. 3. Performance comparison of ZC-AM/FM and DESA-
1 as a function of w 47 and .

we use an AM-FM signal with sinusoidal modulations and
study the effect of AM index (i), FM parameter (3), fre-
quency of AM (f ) and carrier frequency (f.). The sig-
nal is given by z[n] = [1 + pcos(2w fapn)]cos[2x fen +
Bsin(mn/100 + 7/4)] (similar to that considered in [3]).
The amplitude and frequency are estimated by the ZC-AM/FM
algorithm and DESA-1. In DESA-1, whenever the square
root operations gave rise to complex quantities with small
imaginary values, the imaginary values were ignored.
We use a cumulative error measure for AM defined as

. N-Q+1
- _ Alnh?
M = 5 2071 n:EQH (A[n] — A[n])> (5

A similar measure, {Fps, was defined for FM. In simula-
tions, we used () = 24. The errors at the edges are usually
large and are avoided in computing £ 45s and {ppy. Fig. 3
shows &4 and &gy for both methods as a function of
and wapy = 2w fap. From the figure, it is clear that for
ZC-AM/FM, p and w 4 s have no effect on FM estimation,
which, interestingly is not the case with DESA-1. The en-
velope parameters affect even frequency estimation. This
requires further study of the properties of DESA-1. The
present algorithm uses ZC information for frequency esti-
mation and envelope does not affect ZC information. For
large p and w 47, DESA-1 performs poorly. The envelope
estimation errors are only about 3dB more with ZC-AM/FM
compared to the DESA-1 estimates.

The performance as a function of f. and § is shown
in Fig. 4 from which we can infer that the errors in ZC-
AM/FM estimates are consistently smaller than in DESA-1
estimates. As f. increases, there will be more zero-crossings
and hence frequency estimation improves, which in turn,
improves envelope estimation. The AM estimation perfor-
mance of DESA-1 improves only marginally with increase
in f. and 3. Thereafter, it reaches a plateau. The IF estima-
tion performance does not show any change.
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Fig. 4. Performance comparison of ZC-AM/FM and DESA-
1 as a function of f. and 3.

4. APPLICATIONS TO SPEECH AND MUSIC

We also show how the ZC-AM/FM algorithm can be ap-
plied to speech and music signal analysis. Evidence for fine
structured, micro-time scale modulations in amplitude and
frequency of bandpass filtered speech was reported in [4].
Extraction of these using an energy operator is discussed in
[3]. We show here that such modulations also exist in music
signals and that these can be easily extracted using the pro-
posed technique. Small variations in frequency affect the
zero-crossing instants and are detected by ZC-AM/FM al-
gorithm. Speech sampled at 16kHz was passed through a
bandpass filter (BPF) to select a resonant peak of a voiced
segment. It was multiplied with a 512-point trapezoidal
window which tapers towards the end. The result of ap-
plying the ZC-AM/FM algorithm on this signal is shown in
Fig. 5. For frequency estimation, p = 3 and k¥ = 11 were
used.

The results with a music signal (16kHz sampling rate,
Flute chosen as an example), bandpass filtered about a res-
onant peak are shown in Fig. 6. A 1024-point trapezoidal
window was used. p = 3 and k£ = 31, were found to give
smooth estimates. The results indicate that the ZC-AM/FM
method is general and can handle both speech and music
signals.

5. CONCLUSIONS

We have developed a zero-crossing based algorithm for per-
forming AM-FM decomposition of a bandpass signal. The
AM and FM estimation errors for a clean signal are about -
60dB. In terms of parameter dependencies, the ZC-AM/FM
technique is superior in performance to DESA-1. Experi-
mental results also suggest that a unified, modulation-based
analysis-synthesis system, that works for both speech and
audio, can be designed using the proposed technique. This
is currently being investigated.
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Fig. 5. Modulations in speech: [a] voiced segment, [b] spec-
trum and BPF response (scaled), [c] BPF output and super-
imposed envelope (dashed), [d] frequency estimate.
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Fig. 6. Modulations in music: [a] segment of a Flute signal,
[b] spectrum and BPF response (scaled), [c] BPF output,
superimposed envelope (dashed), [d] frequency estimate.
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