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ABSTRACT

One of the major challenges in classification problems based
on signal decomposition approach is to identify the right basis
function and its derivatives that can provide optimal features to
distinguish the classes. With the vast amount of available libraries
of orthonormal bases, it is hard to select an optimal set of basis
functions for a specific dataset. To address this problem, prun-
ing algorithms based on certain selection criteria is needed. Local
Discriminant Bases (LDB) algorithm is one such algorithm, which
efficiently selects a set of significant basis functions from the li-
brary of orthonormal bases based on certain defined dissimilarity
measure. The selection of this dissimilarity measure is critical as
they indirectly contribute to the performance accuracy of the LDB
algorithm. In this paper, we study the impact of the dissimilarity
measures on the performance of the LDB algorithm with two clas-
sification examples. The two biomedical signal databases used are
1. Vibroarthographic signals (VAG) - 89 signals with 51 normal
and 38 abnormal, and 2. Pathological speech signals - 100 sig-
nals with 50 normal and 50 pathological. Classification accuracies
of 76.4% with VAG database and 96% with pathological speech
databases were obtained. This modified method of signal analysis
using LDB has shown its powerfulness in analyzing non-stationary
signals.

1. INTRODUCTION

The Local Discriminant Bases (LDB) [1] algorithm is recently be-
ing used successfully in many classification problems. The opti-
mal choice of LDBs for a given dataset is driven by the nature of
the dataset and the dissimilarity measures [2] used to distinguish
between classes. The choice of the dissimilarity measure for a par-
ticular dataset depends on knowledge of the data, computational
complexity, and the classification accuracy requirements. For ex-
ample probabilistic dissimilarity measures such as relative-entropy
needs prior knowledge of the dataset distribution, whose accuracy
depends on the size of data, on the other hand simple dissimilarity
measures such as Euclidean distance is only suitable for numeric
data sets. A combination of multiple dissimilarity measures with
varying complexity can be used to achieve high classification ac-
curacies.

In this paper we analyze two biomedical signal databases us-
ing LDB algorithm with 3 different dissimilarity measures. The
LDB algorithm is based on the wavelet packet decompositions
with 3 different wavelets namely Daubechies (db4), Coiflet (cf4)
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and Symlet (sy4) [3]. This gives us 9 different combinations for
each of the databases. A two group (class1 and class2) classifi-
cation was performed for the 9 combinations. Linear discrimi-
nant analysis (LDA) based classifier was used to compute the clas-
sification accuracies. The classification accuracies were verified
using the leave-one-out method [4]. The paper is organized as
follows: In Section 2 on Methodology, Local Discriminant Bases
algorithm, dissimilarity measures, feature extraction and pattern
classification are covered. Results and discussions are covered in
Section 3, and Conclusions in Section 4.

2. METHODOLOGY

2.1. Local Discriminant Bases Algorithm

In the LDB [1] algorithm with wavelet packet bases, a set of train-
ing signals xc

i for all C classes are decomposed to a full tree
structure of order N . We restrict our analysis to binary wavelet
packet trees. Let Ω0,0 be a vector space in Rn corresponding to
the node 0 of the parent tree. Then at each level the vector space
is spilt into two mutually orthogonal subspaces given by Ωj,k =
Ωj+1,2k ⊕Ωj+1,2k+1 where j indicates the level of the tree and k
represents the node index in level j, given by k = 0, ...., 2j − 1.
This process repeats till the level J , giving rise to 2J mutually
orthogonal subspaces. Our goal is to select the set of best sub-
spaces that provide maximum discriminant information between
the classes of the signal. Each node k contains a set of basis vectors

Bj,k = [wj,k,l]
l=2no−j−1
l=0 , where 2no corresponds to the length of

the signal. Then the signal xi can be represented by a set of coef-
ficients c as:

xi = Σj,k,lcj,k,lwj,k,l (1)

Basically the signal xi is decomposed into 2J subspaces with
cj,k,l coefficients in each subspace. With the training signals de-
composed into wavelet packet coefficients we need to define a dis-
similarity measure (Dn) in the vector space so as to identify those
subspaces, which have larger statistical distance between classes.
This dissimilarity measure is used in an iterative manner to prune
the tree in such a way that only a node is split if the cumulative dis-
criminative measure of the children nodes is greater than the par-
ent node. The resulting tree contains the most significant LDBs,
from which a set of K significant LDBs are selected to construct
the final tree. The testing set signals are then expanded using this
tree and features are extracted from the respective basis vectors for
classification.
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In the proposed method we use a similar approach with some
modification. Instead of the selective splitting of the nodes, which
basically helps in removing the redundancy in the LDB selection,
we used all the nodes from the full decomposition tree and ranked
them in decreasing order of their dissimilarity measure values be-
tween classes. The first 5 nodes that exhibit high dissimilarity
measure values between the classes are selected for each trial.
Among these nodes, based on the frequency of occurrence in all
the trials, the 5 most occurring significant LDBs are selected. The
redundancy within these 5 LDBs is later removed in the feature
evaluation process in the LDA classifier. This is basically done
to reduce the computational complexity of the LDB algorithm im-
plementation. The whole process is repeated for three different
wavelets (db4, cf4 and sy4) and the wavelet, which provides maxi-
mum dissimilarity measures among all the tested wavelets, is cho-
sen to be the best basis for expansions.

2.2. Databases

2.2.1. Vibroarthographic (VAG) signals

These are the vibration signals emitted from the human knee joints
during an active movement of the leg. The VAG signals can be
used to detect the early joint degeneration or knee defects that
are reflected in knee movements. Extensive work [5] has been
done using time-frequency approach in classifying these signals
into multiple groups. Few important characteristics of the VAG
signals which make them difficult to analyze are as follows: (i)
Highly non-stationary in nature, (ii) Varying frequency dynamics,
and (iii) Multi-component signal. The database consists of 89 sig-
nals with 51 normal and 38 abnormal signals. A normal and an
abnormal VAG signal are shown in Fig. 1a.

2.2.2. Pathological speech signals

These are speech signals recorded from the pathological and nor-
mal talkers in a sound-proof booth at the Massachusetts Eye and
Ear Infirmary. The normal talkers exhibited no abnormal vocal
characteristics and indicated no history of voice disorders. All sig-
nals were sampled at 25 kHz. The signals were the first sentence
of the rainbow passage, ’when the sunlight strikes rain drops in
the air, they act like a prism and form a rainbow’, as spoken by
the subjects. More details about the database and the classification
problem can be found in authors previous work [6]. The database
consists of 100 signals with 50 normal and 50 abnormal signals. A
normal and pathological speech signal are shown in Fig. 1b.

1000 2000 3000 4000 5000 6000 7000

−40

−20

0

20

40

60

Time samples

A
m

pl
itu

de
 (

.a
u)

Normal and Abnormal VAG signals

1000 2000 3000 4000 5000 6000 7000

−80

−60

−40

−20

0

20

Time samples

A
m

pl
itu

de
(.

au
)

Normal

Abnormal

(a) VAG signals

2 4 6 8 10 12 14

x 10
4

−0.4

−0.2

0

0.2

0.4

0.6

Time samples

A
m

pl
itu

de
(.

au
)

Normal and Pathological speech signals

2 4 6 8 10 12 14 16 18

x 10
4

−0.6

−0.4

−0.2

0

0.2

0.4

Time samples

A
m

pl
itu

de
(.

au
)

Normal

Pathological

(b) Pathological speech signals

Fig. 1. An Example of normal and abnormal/pathological signals
for both the databases.

2.3. Dissimilarity measures

In this study we used three different dissimilarity measures and
performed a two group (class1 and class2) classification on the
databases. In general most of the biomedical signals can be char-
acterized by one or more of the following, (i) Their average energy
distribution pattern over frequency bands, (ii) Event based tempo-
ral structures, (iii) Periodicity, and (iv) The amount of randomness.
These rationales were used in arriving at the following dissimilar-
ity measures.

The first dissimilarity measure D1 is the difference in the nor-
malized energy between the corresponding nodes of the training
signals from class1 and class2. This gives the difference in the
energy distribution of the signals on the time-frequency plane.

D1 = E1
j,k − E2

j,k, (2)

where E1
j,k and E2

j,k are the normalized energy of the correspond-
ing nodes for class1 and class2 signals.

The second dissimilarity measure D2 is the correlation index
between the basis vectors at corresponding nodes. This measure
emphasizes those nodes that can detect the difference in the tem-
poral characteristics of the signals between class1 and class2.

D2 =< Bj,k, Fj,k >, (3)

where B and F are the corresponding basis vectors of class1 and
class2 at node (j, k)

The discriminant measure D3 is a measure of estimating the
randomness or non-stationarity of the basis vectors. It is computed
as the set of variances along the segments of the basis vector co-
efficients. The ratio of this variance measure between the signals
from class1 and class2 indicate the amount of deviation observed
in the non-stationarity between the classes.

D3 =
var(var(p))j,k)

var(var(q))j,k)
, (4)

where p and q are the index of the L segments obtained by seg-
menting the basis vectors at node (j, k) for class1 and class2.

2.4. Feature extraction

Once the LDB nodes for each of the three dissimilarity measures
are identified using the training sets (in our study 10 randomly se-
lected signals for each class were used to form the training set) as
explained in Section 2.1, all the 89 VAG signals and the 100 patho-
logical speech signals were decomposed using the correspond-
ing sets of LDB tree structures. Figs. 2 and 3 show the sample
LDB tree structure obtained for the VAG and pathological speech
databases respectively.

The basis vectors from each of the nodes (LDBs) can be di-
rectly used as feature vector, however, considering the dimension
of the basis vectors, we extract the same features from the basis
vectors of LDBs using the dissimilarity measures (D1, D2, and
D3) [1]. That is, from each of the LDB nodes of the correspond-
ing tree structures, the normalized node energy, correlation index
and the variance measure were calculated. In short, each signal in
the database is used to compute 15 features, 5 from each dissim-
ilarity measure. As for the correlation index calculation we use a
random choice of normal signal as a template to correlate with the
signals from respective test databases. The above procedure was
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Fig. 2. A sample LDB tree decomposition for VAG database (db4
wavelet and D3 dissimilarity measure)
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Fig. 3. A sample LDB tree decomposition for pathological speech
database (cf4 wavelet and D3 dissimilarity measure)

repeated for all the three wavelets. So, in total, for each wavelet, a
set of 15 feature vectors was extracted from each of the signal in
the test database.

Figs. 4 and 5 demonstrate the feature space with the first two
dominant features of the VAG and pathological speech database
respectively. From the figures of the feature space plots, the dis-
criminatory boundaries can be visualized between the signals of
class1 and class2. These extracted features were then fed to a lin-
ear discriminant based classifier as will be explained in next sec-
tion.

2.5. Pattern Classification

The motivation for the pattern classification is to automatically
group signals of same characteristics using the discriminatory fea-
tures derived as explained in the previous section. Pattern classifi-
cation was carried out by linear discriminant analysis (LDA) tech-
nique using the SPSS software [7]. In discriminant analysis, the
feature vector derived as explained above were transformed into
canonical discriminant functions such as

f = x1b1 + x2b2 + ....... + x42b42 + a, (5)

where {x} is the set of features, {b} and a are the coefficients
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and constant respectively estimated and derived using the Fisher’s
linear discriminant functions [7]. Using the chi-square distances
and the prior probabilistic values of each group the classification
is performed to assign each sample data to one of the groups.
The classification accuracy was estimated using the leave-one out
method which is known to provide a least bias estimate [4]. In
leave-one-out method, one sample is excluded from the dataset
and the classifier is trained with the remaining samples. Then the
excluded signal is used as the test data and the classification accu-
racy is determined. This is repeated for all samples of the dataset.
Since each signal is excluded from the training set in turn, the in-
dependence between the test and the training set are maintained.

3. RESULTS AND DISCUSSIONS

All the signals from both the databases were decomposed using
their corresponding LDB tree structures. Features were extracted
as explained in Section 2.4 and fed to the LDA based classifier.
Classification accuracies were computed for the 9 combinations
of the wavelet and the dissimilarity measures as shown in Table

II - 747

➡ ➡



Wavelet LDA type D1 D2 D3

db4 Regular 65 64 67
Cross.V 61 57 64

cf4 Regular 70 61 61
Cross.V 65 57 48

sy4 Regular 67 63 57
Cross.V 61 60 45

Table 1. Classification table for VAG database. Regular - Nor-
mal LDA, Cross.V - Leave-one-out method LDA, Classification
accuracies are in percentage (%)

Wavelet LDA type D1 D2 D3

db4 Regular 84 64 77
Cross.V 84 60 72

cf4 Regular 85 52 92
Cross.V 84 37 91

sy4 Regular 87 53 86
Cross.V 84 32 84

Table 2. Classification table for pathological speech database.
Regular - Normal LDA, Cross.V - Leave-one-out method LDA,
Classification accuracies are in percentage (%)

1 and Table 2 for both the databases. It can be observed from
Table 1 that even though there are little variations, on an aver-
age all the three dissimilarity measures perform equally for the
VAG database. However from Table 2 for the Pathological speech
database it can be seen that the dissimilarity measures D1 and
D3 provide high classification accuracies, whereas D2 performs
poorly. In overall for VAG database we observe that the db4 wavelet
in combination with all the three dissimilarity measures provides
the highest classification accuracy. Similarly we observe for patho-
logical database that the cf4 wavelet in combination with D1 and
D3 provides the highest classification accuracy. Using these com-
binations we computed the highest possible classification accura-
cies for both the databases as shown in Table 3 and Table 4.

For the VAG database an overall classification accuracy of
78.7% using regular LDA and 76.4% using leave-one-out method
were achieved. This is higher than the reported classification accu-
racy in [5]. For the pathological speech database an overall classi-
fication accuracy of 97% using regular LDA and 96% using leave-
one-out method were achieved. This is higher than the reported
classification accuracy in [6]. The above results demonstrate the
performance optimization of the LDB algorithm using the right
choice and combination of the dissimilarity measures to achieve
high classification accuracies for non-stationary signal analysis.

4. CONCLUSIONS

The importance of the dissimilarity measure in the performance
optimization of the LDB algorithm was discussed with two clas-
sification examples. Classification accuracies were analyzed for
different combinations of wavelets and the dissimilarity measures.
Improvement in the classification accuracies by using a combina-
tion of multiple dissimilarity measures was demonstrated. High
classification accuracies were achieved for the databases under
study, thus proving the success of the modified LDB in analyz-

Method Groups Normal Abnormal Total
Regular Normal 39 12 51

Abnormal 7 31 38
% Normal 76.5 23.5 100

Abnormal 18.4 81.6 100
Cross.V Normal 39 12 51

Abnormal 9 29 38
% Normal 76.5 23.5 100

Abnormal 23.7 76.3 100

Table 3. Table showing the highest classification accuracy
achieved for the VAG database(db4 wavelet and selective combi-
nation of D1, D2 and D3) . Regular - Normal LDA, Cross.V -
Leave-one-out method LDA, % = Percentage of classification

Method Groups Normal Pathological Total
Original Normal 48 2 50

Pathological 1 49 50
% Normal 96 4 100

Pathological 2 98 100
Cross.V Normal 48 2 50

Pathological 2 48 50
% Normal 96 4 100

Pathological 4 96 100

Table 4. Table showing the highest classification accuracy
achieved for the pathological speech database (cf4 wavelet and
combined D1 and D3). Regular - Normal LDA, Cross.V - Leave-
one-out method LDA, % = Percentage of classification

ing non-stationary signals. Future work involves in automating
the choice of dissimilarity measures based on the nature of the
databases and applications.
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