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ABSTRACT 

The high-order ambiguity function (HAF) was 

introduced for the estimation of polynomial-phase signals 

(PPS). Currently the HAF suffers from noise-masking 

effects and from the appearance of undesired cross terms 

in the presence of multi-components PPS. The multi-lag 

product HAF concept was then proposed as a way to 

improve the performances of the HAF. Nevertheless, 

performances of the new methods are affected by the error 

propagation. This effect is due to the technique used for 

polynomial order reduction, common for current 

approaches : signal multiplication with the complex 

exponentials formed with the estimated coefficients. 

In this paper, we introduce an alternative method to 

reduce the polynomial order, based on the successive 

unitary signal transformation, according to each 

polynomial order. We will prove that this method 

considerably reduces the effect of error propagation. 

1. INTRODUCTION 

It is well known that there is no transformation from 

the Cohen's class which can produce the complete 

concentration along the instantaneous  frequency law 

(IFL) when this one is a nonlinear function of time. 

Therefore, different high order distributions have been 

developed in order to better match the non-linear time-

frequency behavior of the analyzed signal [1], [2], [3], [4]. 

For example, the polynomial phase signal constitutes a 

good model in a variety of applications (e.g. Radar, 

Communication, etc ) [1].  

One of the first approaches to estimate the parameters 

of the PPSs [2] provides good results for high signal-to-

noise ratio (SNR). Nevertheless, since the HAF is a non-

linear method, it suffers from three basic problems : 1)  

noise-masking effects for low SNR, 2) cross terms in the 

presence of multi-component PPSs (mc-PPSs) and 3) the 

propagation of the approximation error from an order to 

other.  

Recently, different methods have been proposed in 

order to eliminate the first two limitations. The key point 

is to use the multi-lag concept in the HAF computing 

procedure [1]. Moreover, multiplying the HAFs obtained 

for some lag sets (product HAF - PHAF), the 

performances related to 1) and 2) are considerably 

improved with respect to multi-lags HAF [1].  

 Nevertheless, the effect of propagation error remains a 

serious limitation when we try to estimate a deeply non-

linear IFL (underwater transitory signals, digital 

modulation, etc). Therefore, we propose a new procedure 

for polynomial order compensation, based on the 

recursive signal warping. In fact, using the order reduction 

property of the warping technique, the idea is to iteratively 

apply this method to reduce the phase orders. 

 This paper is organized as follows. In section 2, we 

present the Product HAF method. The major limitation of 

the PHAF, related to the error propagation effect, is 

described in section 3. Afterwards, using the warping 

technique [5], a new method for order compensation is 

proposed in section 4. Some examples will be presented in 

section 5.  We will finally present some remarks in 

"Conclusion and Perspective" (section 6). 

2. PRODUCT HIGH-ORDER AMBIGUITY 

FUNCTION 

As it was illustrated in [1], [2], the classical HAF 

algorithm presents some limitations, related to the noise 

robustness and the cross-terms presence. In order to solve 

these aspects, the multi-lag HAF (mlHAF) concept has 

been initially proposed in [1]. In fact, the mlHAF is based 

on the generalization of the high order instantaneous 

moment HIM [2] : 

*
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where i,...,, 21i  is the lag set. Applying the 

Fourier transform to (1), we obtain the ml-HAF of the 

signal s(t) : 
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 The main property of HIM is that, assuming a PPS 

model for the analyzed signal, i.e. 
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where k
K

k ak 1!~
 (5). 

 Based on these results, Porat [2] has proposed an 

algorithm which estimates sequentially the coefficients 

{ak}. At each step, using a spectral analysis method, we 

estimate the spectral peak and, using the HAF, we 

compute an estimation value ( kâ ) of ak. Using this value, 

the effect of the phase term of the higher order is 

removed: 

1 ˆ k
kk k ja t

s t s t e           (6)

Using the ml-HIM concept (relation (1)), Barbarossa 

and al [1] introduced the Product HAF: the mlHAFs 

computed, via relation (2), for different lag sets  
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are multiplied, obtaining also a more robust method and a 

cross-term free representation :  

1

1

1
11

1

1
; ; ,

K
l

iL
i

K K
l

i

i

l

K
PHAF f mlHAF s fT (8) 

The simulation results given in [1] proved that the 

PHAF solves both noise robustness and ambiguity 

problems, providing also a correct IFL estimation. 

Nevertheless, the analyzed signals were characterized by 

smooth time-frequency behavior (usually, 3th order PPs). 

If this condition is not verified, one of the major limitation 

of the PHAF based approaches, related to the error 

propagation phenomenon, acts. This phenomenon is 

studied in the next section. 

3. ERROR PROPAGATION IN POLYNOMIAL 

PHASE MODELING 

Let consider the signal given in (3) and we denote with 

Kâ  the estimation of the kth order polynomial coefficient. 

In real applications [2], since a spectral estimation of a 

discrete sequence is involved, this value differs from the 

theoretic one by KKK aa ˆ - the approximation error. 

This error is directly related to the number of points in 

Fourier transform and to the SNR ([1]). Using this 

estimate, we remove, via (6), the k order phase component   
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 The (k-1)th order HIM of s(k)(t) is expressed as  

2
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ˆˆ1 !1
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K

K Kj K a tK

KHIM s t e (10)

 This expression is a consequence of the main HAF 

property previously presented : the (k-1)th  order HIM of a 

PPS is a sinusoid with an angular frequency related, via 

(5), to the (k-1)th  order polynomial coefficient. 

Nevertheless, due to the measurement error existing for 

the kth order, 1
ˆ

Ka  is not the correct value of the (k-1)th

order polynomial coefficient of signal s(k-1). In order to 

find the relation between the errors at order k and (k-1), 

we can  evaluate 1

1 ;
K

KHIM s  using the recurrent 

definition given in (1) and the relation (4) and (5). We 

obtain the following expression :  

2 1
11 !1

1 ;
K K

K Kj K a K t RK

KHIM s e (11)

where R is a residual term which does not depend on t.

Since the mlHAF evaluation supposes the computation of 

Fourier transform of HIM, we focus only on the 

coefficient of t. Therefore, if we compare the 

corresponding terms which appear in (10) and (11) we 

obtain the following relation between the errors for two 

consecutive orders : 

2 1 2

1 1
ˆK K K

K K Ka K a (12)

and, with the notation 
1 1 1

ˆ
K K Ka a , we obtain : 

1 KK K    (13)

 Furthermore, using the optimal value of the lag 

proposed in [2]  i.e. KN / (N-sample number), we get: 

1 KK N                                     (14)

This relation shows that the error existing at a given 

order is transmitted at the inferior order by multiplication 

of N. The next figure illustrates this dependence for N=10. 

Figure 1. Error propagation effect. 

From this figure, it can be observed that even if the 

measurement error for the highest order is insignificant, 

its effect through the lower orders becomes deeply 

disturbing. It explains why the error propagation effect 

does not affect the polynomial estimation when a small 

approximation order is required (3 or 4). Nevertheless, 

there are many situations which impose a high 
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approximation order : digital modulations, transitory 

signals, etc. One example is given in figure 2 where we 

process, via PHAF-based phase modeling method, a 

frequency shift keying (FSK) modulation. 

Figure 2. PHAF-based phase modeling of a FSK signal 

 The theoretical IFL is plotted in figure 2.b. Note that 

the SNR is about 30 dB. The PHAF-based estimation 

procedure is applied, starting with the order 9. At the 

superior orders (9, 8, 7) PHAF performs quite well : the 

propagation error is insignificant, but its effect is 

accumulated and it becomes disturbing for inferior orders 

(down to 6). This can be observed in the figure 2.a. , 

where the peak locations give information about the 

estimation quality. Consequently, the estimation of the 

polynomial coefficients is not correct (figure 2.b); the 

evaluated IFL does not match the correct time-frequency 

behavior of the FSK modulation. 

 A potential solution to reduce the error propagation is 

proposed in next section.

4. WARPING-BASED PHASE ORDER REDUCTION 

In time-frequency analysis, the warping operator 

principle has recently become a very useful concept for 

generation of non-linear time-frequency representation 

(TFR) [5]. Mathematically, a warping operator is defined 

as a unitary transform U on l2( ), whose effect is x-axis 

deforming :     
1/ 2

's x w x s w xU           (15)

where w is a smooth, one-to-one function, comprising a 

large subclass of unitary transformations ([5]). Generally, 

these functions, called warping functions, are chosen to 

ensure the “linearization” of signal time-frequency 

behavior. The design of a warping function associated to a 

signal is possible if the signal modulation nature is 

known.[5]. This is not always possible, especially in the 

case of passive systems. For this case, the polynomial 

phase modeling seems to be a potential solution for signal 

IFL describing.  

 To reduce the error propagation effect, we propose the 

replacement of this technique with a warping-based 

method. More precisely, we define a particular warping 

operator as : 
K

K

K
w

a

t
ttt

/1

ˆ
: K

w
K ww K (16)

where ˆ
k

a  is the kth order estimated polynomial coefficient. 

The following example illustrates the effect of this 

warping operator for a 3th order PPS given by : 

4 2 6 32 (0.25 4.610 310 )j t t t
s t e      (17)

The Wigner-Ville Distribution (WVD) of this signal is 

depicted in figure 3. Using the warping operator obtained 

by the particularization of the relation (16) (for k=3 and 
6

3
ˆ 2.8 10a ) we obtain a linear time-frequency structure 

(i.e. a 2th order PPS) as illustrated in figure 3. 

Figure 3. Order reduction using the warping operator (16) 

 Therefore, in order to reduce the polynomial order we 

apply, in an iterative manner, a warping operator designed 

as shown in (16).  The effect of this operator on the PPS 

defined in (3) is depicted by : 
1/

1

0

exp exp
ˆ
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K
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w K m w
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residual

                  (18)

 Therefore, the result of the warping transform of a Kth

order PPS consist in a (K-1)th order PPS for new temporal 

variable tw
K . The (K-1)th order PHAF of this signal, with 

respect to variable tw
K , peaks to a frequency location 

related, via relation (5), to the aK-1 coefficient. Once aK-1

estimated, we construct the (K-1)th order unitary operator 

UK-1 as indicated in (16). The process is iterated until all 

polynomial coefficients are estimated. 
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As the relation (18) shows, the (K-1)th coefficient of 

the signal (UKy) depends only on the aK-1 coefficient, 

avoiding also the process of error propagation to the lower 

orders. This will be practically proved in the next section.  

5. SIMULATION RESULTS 

In this section, we firstly give the performances in 

terms of estimated variances as a function of the SNR. We 

assumed a 3th order PPS embedded in white gaussian 

noise. Two methods were compared – classical PHAF 

estimation method and PHAF-based estimation method 

with warping-based phase compensation (denoted 

“WarpComp” method). Each variance was computed for 

500 trials and, for each order, it was compared with the 

Cramer-Rao bound (CRB), theoretically evaluated in [2]. 

Figure 4. The estimated variances versus SNR 

 The first plot proves that, for the highest order, the 

performances of both methods are similar : the estimation 

of the highest order coefficient depends on the noise only. 

The next two pictures show that, using the warping-based 

phase compensation, the estimation performances remains 

close to the CRB as in the case of the highest-order 

coefficient. Consequently, the performances of this 

method depend only on the noise, whereas in the PHAF 

case they are affected also by the error propagation 

phenomenon.  

 The error propagation effect reduction is also 

illustrated in the next figure, using the signal presented in 

the figure 2. This figure shows, the proposed method 

provides a much more accurate estimation of the IFL of a 

FSK signal. It is illustrated by an existence of a single 

peak at each polynomial order. Consequently, the 

polynomial order reduction through the procedure based 

on the warping operators (section 4) considerably 

improves the performances of the PHAF-based estimation 

procedure.  

 The statistical analysis and the result for a FSK signal 

prove that this method can successfully be used to 

estimate the polynomial model of a general class of 

signals. 

Figure 5. PHAF estimation using warping phase reducing  

6. CONCLUSION AND PERSPECTIVES 

In this paper we have proposed a method, for 

polynomial order reduction, based on the warping 

principle, applied to each polynomial order. This method 

constitutes an attractive way to attenuate the effect of 

error propagation which inherently appears in any 

estimation algorithm of the PPSs. As shown by the results, 

this method, associated with a modern procedure for 

polynomial phase modeling, provides accurate time-

frequency information about the analyzed signal. 

In further works, we intend to apply this procedure in 

real contexts, such underwater signal processing or digital 

modulation recognition.  
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