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ABSTRACT

Impulsive acoustical events, or impacts, compose a big

family of everyday sounds. Detection and separation of 

these sounds is an important task of current computational

auditory scene analysis. In this paper we propose a

method along with an online architecture for detecting and

separating acoustical impacts, which is able to find out

each and every impulsive acoustical event in a continuous

data flow. An energy density function on a time-

frequency span is given as the result of separating each

impact from the background and other overlapping

impacts. Onsets are used for finding events. A prediction-

based method is introduced for separating events that

overlap both in time and in frequency. The method does 

not rely on spectral peak tracks or harmonic properties,

thus is applicable to a broad class of sounds. 

1. INTRODUCTION 

Impulsive acoustical events, or impacts, compose a big

family of everyday sounds. Understanding these sounds is

an important task of current computational auditory scene

analysis (CASA). This paper deals with the analysis of 

acoustical impacts. Given an acoustical waveform, our

goal is to answer three questions: 1) whether there are any 

impacts present, 2) when and in which band, and 3) how 

their energy is distributed. By answering these questions,

we separate each and every existing impact out of the 

continuous data flow into the form of its time-frequency

(T-F) representation. Similar topics have been studied in

the literature [1-3]. Some of these systems rely on pre-

detected spectral peak tracks to form auditory elements,

thus are best for harmonic or quasi-harmonic sounds, such 

as music and speech. Impacts on the other hand, may be

harmonic or not. However, impacts have their own special

properties that enable effective methods for the separation

purpose.

In common sense, we say that a sound is impulsive if

the stimulus on the sound source lasts a very short time,

therefore may be approximated by an impulse signal. The 

resulted sound thus contains two stages, a very short

transient stage followed by an unforced vibration stage. In 

the transient stage, the energy reaches the top in a very 

short instant, forming an onset. In the unforced vibration

stage, the sound attenuates in a pattern determined by the

source object only. We reduce the analysis task to two

problems: onset detection and event forming. The onset

detector finds each existing impact and triggers the event 

former; the latter then tells how this impact progresses.

These two parts are integrated in a filterbank based online

parallel architecture, which is to be described in details.

Section 2 describes the system structure. Sections 3 

and 4 explain the onset detector and event former. Results

are given in section 5. Section 6 concludes our discussion.

2. THE SYSTEM 

Our system takes as input a waveform audio stream, and

outputs a T-F representation for each detected impact.

This representation includes a time-frequency span S and

a positive energy density function E( defined on S. 

Here a time-frequency span is defined as a subset of the 

2D space T

), ft

F , where T denotes time and F denotes

frequency. In our problem both T and F are discrete and

all events are of limited band and finite duration, so S is

always finite (except the zero event, see section 4).

The whole system comprises a universal controller

(UC) and a bunch of working units (scouts). UC advances 

at a constant interval and serves as a synchronizer that 

drives each scout at proper instants, which allows the 

choice of individual step length and starting phase for

every scout. The scouts operate in a parallel manner. Each

scout is associated with a subband, working with its local

data (e.g. band-limited instantaneous power, etc.)

provided by UC. A scout is expected to master whatever

happens in its band. It records statistical and structural

properties of local data, detects local onsets (called onset

components), and tracks local events (called event

components). The UC then combines the results from the

scouts and provides necessary feedbacks to direct them.

UC and scouts communicate each other through messages.

After each progress step of UC, UC and scouts process

their messages iteratively, until all messages are handled.

Event components (ECs) are the basic units in the 

system. An EC is the restriction of an event on a subband 
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peak

at frequency associated with a scout k. The T-F span

of the EC is restricted to . An EC is formed when 

the scout believes a new event has happened which causes 

power increase in its band. For impacts, since the stimulus

is zero after the transient, an EC does not likely to make

further contribution once its power has fallen below a

floor level. Hence we assume that the T-F span of an EC

of an impact takes the form of {( .

kf

}{T kf

,t }|) jik tttf

ECs are grouped into events according to the 

common-onset cue, i.e. components of the same event

tend to start at the same time [4]. Therefore an event is 

composed of a bunch of ECs starting at almost the same

time, each lasting a finite duration. Figure 1 shows the 

spectrogram and the T-F span of a single impact.  By 

careful arrangement of working procedures, our system is

able to separate impacts from continuous data, which is to

be explained in the following sections.

Figure 2 describes the relationship among the four

elements in our system, namely the universal controller,

scouts, event components and events.

3. ONSET DETECTION 

Onsets play a key role in finding impacts in sounds. Each

impact features an onset at the beginning. By detecting all

the onsets, we locate all possible beginnings of impacts.

Methods for onset detection have been studied by many

[5-7]. Filterbank based approaches are favored for their

accuracy and robustness. We use a similar method in our 

system that detects onset components in each subband.

Very close onset components are combined into a global

onset by UC according to the common-onset cue.

For detection of onset components, a scout applies an

exponential onset filter to its local logarithmic amplitude

track. The impulse response of this filter is given by 

t2t1

z

0
f(t)

t0 t3

Figure 3. Endpoints of an onset component Figure 1.  Spectrogram (left) and T-F span of an impact
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The filter emphasizes fast changes in its input signal and 

suppresses slow variations. Notice that h  has zero

mean. Figure 3 shows the output of the onset filter 

in the vicinity of an onset component. At each positive 

peak of , the scout examines the peak value and

some statistical records of to decide if the peak 

indicates an onset component.

)(t

)(tf

)(tf

)(tfFigure 2. Working modules of the system

For grouping onset components, we locate 4 critical 

points on each detected local onset (Fig.3): t0 and t3 at the 

zeroes of closest to the main peak, as well as t1 and 

t2 at the zeroes of 

)(tf

ztf )( closest to the main peak, 

where z is some small value above zero. We call the

interval (t0, t3) outer domain of the onset component, and 

interval (t1, t2) inner domain of it. We think that two onset

components are “very close” if and only if the inner

domain of either one overlaps the outer domain of the

other. Very close onset components are combined into

groups. A group accepts as its new member any onset

component that is very close to one of its already existing

members. In the end when a group stops growing, it

defines a global onset, which is useful for global onset

notifications, to be explained in section 4.1.

4. EVENT TRACKING 

After finding the onset of an event, a couple of ECs are

created to track the behavior of the event, each in one 

subband. In each band no more than one EC may exist for

the same event. An EC is controlled by the scout of its

band. One scout may manage several living ECs at the

same time, allowing events to have overlapping T-F spans.

4.1 Birth of event components 

The assumption that every event starts from an onset, 

along with the common-onset cue, implies that every EC

starts from an onset. This happens in two ways, onset-

triggered EC or notice-triggered EC. An onset-triggered

EC starts from an onset component. It is created by a 

scout when the latter detects the onset component. Notice-

triggered ECs are related to the fact that an event does not
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always make distinct onsets in all of its subbands. When a 

global onset is defined, the UC sends a notification to

each scout that has not declared onset components during 

the onset. The notified scout then checks to see if this

onset affects its subband. If it does, the scout creates a 

notice-triggered EC. After this step, all ECs associated

with the onset are known. These ECs compose an event

associated with the given onset.

A B
(a)

(b)

AEach scout utilizes a local predictor for detecting

notice-triggered ECs. The local predictor predicts future

data or certain properties of future data following current

pattern. For our current purpose, recent local data before

the global onset is used to predict the signal power during

the onset. If the observed data shows an increase in power

stronger than expected, a notice-triggered EC is declared.

(c)

B(d)

(e)

Figure 4. Tracking event components 

4.2 Tracking event components 

For each scout, the global task of event separation is

restricted within its own subband, thus reduced to two

problems. One is finding the end of each EC in its 

subband, giving the restricted T-F span; the other is

estimating the power of each EC at each instant during its

life, giving the restricted energy density function. The 

solution to the first problem is straightforward: an EC dies

when its power drops below a floor level. An EC’s

instantaneous power is derived from the local data of its

scout, e.g. the total power in the subband. When there is

only one living EC in the band, its power equals the total

power. When there are multiple living ECs from several

events, the scout must distribute the total power among

them. This is what the second problem deals with.

Like the scout, each EC has a local predictor of its

own, which estimates its future power following current

pattern. When a new EC is created, it’s given a masking

status, indicating it dominates its subband. All other living

ECs in the same subband are masked. The instantaneous

power of a masked EC is estimated by its local predictor. 

These predicted values are then subtracted from the total 

band-limited power. The residue gives an estimation of

the instantaneous power of the masking EC. Usually at the

beginning of a new EC, the residues are much larger than

the predicted powers, thus giving a fairly reliable

estimation. If at any time the power of the masking EC

falls below one of the masked ECs’, the masking EC loses

its masking status and becomes masked, meanwhile the

strongest masked EC gets hold of the masking status. The 

local predictor of an EC may be trained or updated only

when the EC is masking and dominates the total power.

A masked EC dies when its predicted power falls

below a local floor level. A masking EC dies when its

estimated power falls below the same local floor level. An

event dies when all of its living components are masked

and the sum of their powers falls below a global floor

level. Some restrictions are imposed on the predictors to

ensure that all events end up properly.

4.3 Zero event 

We define a special event called zero to represent the

general background. The T-F span of the zero event is the

whole FT space, i.e. the zero event is born with the 

system, spans all frequencies, and never dies. The zero

event has one and only one component (zero EC) in every

subband. Operations with the zero event are treated almost

the same way as acoustical events. A zero EC is 

responsible for monitoring the local signal when it’s the

only living EC in its subband, keeping records of

statistical measures of the acoustical background. The 

zero event and its components provide global and local

floor levels. A zero EC always stands on the local floor

level. A zero EC is masked whenever there is another EC 

in its subband. Otherwise it is the masking EC.

The local predictor of a zero EC often takes the form

of a constant )()( 0tyty . To ensure that the zero event is

able to follow the variations of the background, the zero 

ECs are allowed to directly utilize local data for updating 

their local predictors even if they’re masked. However, 

the update rate of a zero EC in this way is kept very slow,

ensuring a stable estimation of the acoustical background.

When a zero EC gets masking status, the update rate is

much faster, and its local predictor will converge to the 

current background very quickly. This is especially

preferred when the “general background” includes loud

but slow varying sounds which do not have onsets.

Figure 4 illustrates what EC tracking is all about.

Suppose there are two ECs A and B, B overlapping the

mid part of A (Fig.4a). Fig.4b depicts the local data (in

solid curve). Since 2 onset components are found, the

scout analyzes this piece of data into 3 ECs, including the 

zero EC (Fig. 4c – 4e). A is masked by B in section 3 and 

masks B in section 4. The zero EC is masked by A in 

sections 2 and 4, and by B in section3. When masked, an

EC goes on by prediction (dotted curves in Fig.4b).
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4.4 Event forming 

We have seen from section 4.1 that an event already

knows all its components in its early stage. These ECs

together form the event. Its T-F span is the union of all its 

components’ T-F spans. Its energy density at point

is the instantaneous power of its component in subband k

at time t.

),( kft

(a) (b)
Now we have separated every event with an onset, 

the only thing left is to verify whether it is an impact. We

simply check the track of its logarithmic power to see if it

conforms to some common pattern of impacts [8]. For

example, we use a function y  to approximate

the normalized logarithmic power. An ideal impact has 

tt 1)(

1. For most impacts the exponent is smaller than 3

and the approximation error is not too large.

(c) (d)

Figure 5. Beating china, hand clap, and white noise 

5. EXAMPLES

Since the representation of each event is given as an 

energy density function in a T-F span, we use the

spectrogram the illustrate the results of our separator. (c)(a) (b)

An example of artificially mixed sounds is given in

Figure 5. Two very clean samples, a sound of beating

china and another of hand clapping, are added to a

background of Gaussian white noise.  The original

spectrogram is given in Fig.5a. The separated zero event

(noise), beating china event and hand clapping event are

given in 5b through 5d respectively.

(d) (e) (f)

An example of door knocks with rattles is given in 

Figure 6. Fig.6a shows the incoming signal. Six events are

visible from Fig.6a, including two knocks and 4 rattles. 

This sound is decomposed into 7 normal events (Fig.6b-

6h) and the zero event (Fig.6i). Events in 6d, 6f, 6g and 

6h are those rattles seen in 6a, and the event in 6e is just

another impact too weak to be visible here. The rattles are 

successfully removed from the door knocks, while

“stealing” some low frequency energy that does not

belong to them.

(g) (h) (i)

Figure 6. Door knocks with rattles 

6. CONCLUSION 

In this paper we have described a system for separating

impulsive acoustical events from other sounds. Onsets are

used for finding impacts, and a prediction based method is

developed for distributing energy among event

components. Our current system relies only on a few very

common assumptions for impact detection, thus is capable

to deal with the general class of impacts. We have also

proposed an online architecture for implementation of 

stream processing, featuring supervised cooperation of 

multiple working units. Such a system structure offers the

flexibility to incorporate advanced knowledge or filtering 

techniques into current implementation, which is the key

to further enhance our system in future. 
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