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ABSTRACT

We study the errors in particle filtering with incorrect system model
parameters. The total error in approximating the posterior distri-
bution of the actual process (state) given noisy observations, can
be split into modeling error and particle filtering error in track-
ing with the incorrect model. We show that the bound on both
errors is a monotonically increasing function of the error in the
system model per time step. The bound on the particle filtering er-
ror blows up very quickly since it has increasing derivatives of all
orders. We apply this result to bounding the errors in approximat-
ing our statistic for slow change detection in nonlinear systems.

1. INTRODUCTION

Given noisy observations, {Yt}, of some function, {ht}, of the
state, {Xt}, the non-linear filtering problem is (i) to evaluate the
posterior probability distribution, πt, of Xt given observations
Y0:t and (ii) for any given function, φ, of the state, evaluate its
expectation under πt (posterior expectation). For most non-linear
systems, exact filters do not exist and hence one resorts to approx-
imate filtering methods like particle filtering [1] (which is a se-
quential Monte-Carlo method). Finite number of particles, N , in
particle filtering (PF) introduce PF error which has been shown to
converge to zero as N → ∞ [1]. Also, often the correct system
model (state transition kernel) is not known. If the system model
error lasts for a finite time and assumptions for asymptotic stability
[2] are satisfied, the asymptotic (t → ∞) contribution of that error
to the total error in the posterior can be shown to go to zero. We
use bounds on these errors from [2] and show here that the bounds
are an increasing function of the magnitude of the system model
error per time step (quantified by a “distance metric” between the
correct and incorrect state transition kernel).

We then apply this result to the slow change detection prob-
lem in non-linear systems with unknown change parameters [3].
The change detection statistic in [3] is a posterior expectation of a
function of the state. Model error occurs due to the change. The
“distance metric” now quantifies the rate of change (change mag-
nitude per time step). In this case our result implies that the error
in approximating the statistic for the changed system using a PF
optimal for the original system, is smaller for slower changes.

Some other examples of PF under model error are: PF when
the model parameters are learnt from insufficient training data; PF
for tracking changing systems where change system parameters
are learnt on the fly [4, 5]; PF of systems operating in multiple dis-
crete modes (each with a different system model) [6].
Related Work: There has been a lot of recent research on sta-
bility of the optimal nonlinear filter. Asymptotic stability results

w.r.t. initial condition were first proven in [7]. The Hilbert projec-
tive metric has been used to prove stability w.r.t. the initial condi-
tion and also w.r.t the model when the transition kernel is mixing
[8]. We use in this paper results from [2] in which the authors
have proved stability and also extended it to prove particle filter
convergence, without assuming a mixing transition kernel.

In [9], PFs have been used for sudden change detection in
non-linear systems with known change parameters. It defines a
change detection statistic using observation likelihood ratio. When
change parameters are unknown, one can modify this to thresh-
olding observation likelihood or use tracking error [3] to detect
sudden changes. For detecting slow changes, we have proposed a
statistic called ELL [3] which is the posterior expectation of the
negative log of the prior state pdf. We show here that the approxi-
mation of this statistic is more accurate for slower changes (which
is intuitive).
System Model: We assume that we have an �nx valued state
process, X = {Xt} and an �ny valued observation process, Y =
{Yt}1. The system (or state transition) process {Xt} is assumed
to be a Markov process with state transition kernel Qt(xt, dxt+1)
and the observation process is defined by Yt = ht(Xt)+wt where
wt is an i.i.d. noise process and ht is, in general, a nonlinear func-
tion. The prior initial state distribution, denoted by π0(dx), the
conditional distribution of observation given state, Gt(xt, dyt),

with pdf given by gt(x, Yt)
�
= ψt,Yt(x), and the state transition

kernel, Qt(xt, dxt+1), are known and assumed absolutely contin-
uous 2.
Particle Filtering Algorithm: The problem of nonlinear filter-
ing is to compute at each time t, the conditional probability dis-
tribution, of the state Xt given the observation sequence Y1:t =
(Y1, Y2, ...Yt), πt(dx) = Pr(Xt ∈ dx|Y1:t). The transition from
πt−1 to πt is defined using the Bayes recursion as follows:

πt−1 —-> πt|t−1 = Qtπt−1 —-> πt = ψt.πt|t−1
�
=

ψtπt|t−1

(πt|t−1, ψt)

For nonlinear or nonGaussian system or observation model, ex-
cept under very special cases, the filter is infinite dimensional and
hence one approximates it by sequential Monte Carlo methods
like particle filtering. The particle filter (PF) [1] or Bayesian
Bootstrap Filtering [10] is a recursive algorithm which produces
at each time t, a cloud of N particles {x(i)

t } whose empirical
measure, πN

t (a random measure), closely “follows” πt. It starts

1We use the subscript ‘t’ (e.g. Xt, Yt) instead of ‘n’ for (discrete) time
instants, to avoid confusion with N used for number of particles in Particle
Filtering

2Note that for ease of notation, we denote the pdf by the same symbol
as the probability distribution
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with sampling N times from π0 to approximate it by πN
0 (dx)

�
=

1
N

∑N

i=1
δ

x
(i)
0

(dx). The Bayes recursion then runs as follows:

πN
t−1

�
=

1

N

N∑
i=1

δ
x
(i)
t−1

(dx) —-> πN
t|t−1

�
=

1

N

N∑
i=1

δ
x̄
(i)
t

(dx)

—-> π̄N
t

�
=

N∑
i=1

w
(i)
t δ

x̄
(i)
t

(dx) —-> πN
t

�
=

1

N

N∑
i=1

δ
x
(i)
t

(dx)

where x̄
(i)
t ∼ Qt(x

(i)
t−1, dx),

x
(i)
t ∼ Multinomial({x̄(i)

t , w
(i)
t }N

i=1)

w
(i)
t

�
=

ψt(x̄
(i)
t )

(πN
t|t−1

, ψt(x̄
(i)
t ))

(1)

Notation: We discuss here some more notation: (., .) is used to
denote the inner product and ||.|| denotes the total variation norm
of any signed measure. “a.s.” denotes almost surely w.r.t. the
probability distribution of the observation sequence Y0:t. Also,

Q(µ)
�
=

∫
x

Q(x, dx′)µ(dx) where µ is a probability distribution,

and Q̄(µ)
�
= Q(µ)

Q(µ)(E)
= Q(µ)∫

x′∈E

∫
x∈E

Q(x,dx′)µ(dx)
.

Organization of the Paper: In Section 2, we state the results
from past work and then present our own result on approximation
error bounds. Section 3 explains the change detection problem and
the application of our result to it. Conclusions are given in Section
4 and Section 5 (Appendix) contains the proof of our result.

2. BOUNDING APPROXIMATION ERRORS

Let (πt, φ) is the posterior expectation of φ under the exact model
and exact nonlinear filter. If there is a model error, i.e state transi-
tion kernel is Qb

t while the non-linear filter uses Qa
t , the estimated

posterior is denoted by πb,a
t . This is approximated using a PF with

N particles, and then the posterior is denoted as πb,a,N
t . In this

section, we first provide some definitions and the convergence the-
orems from [2] and then present our result on bounding on the total
error, eN

t = |(πt, φ) − (πb,a,N
t , φ)|.

Definition 1 The unnormalized filter kernel [2] for a system
with state transition kernel Qt and probability of observation given
state ψt,Yt(x), is given by Rt,Yt(x, dx′) = ψt,Yt(x

′)Qt(x, dx′)
[2]. So Ra

t,Y a
t

= ψt,Y a
t

Qa
t is the unnormalized optimal filter ker-

nel for filtering observations coming from hypothesis a (denoted
by Ha). In this paper we study the behavior of the non-optimal fil-
ter whose unnormalized kernel is given by Ra

t,Y b
t

= ψt,Y b
t
Qa

t i.e.

the transition kernel under Ha used to track observations coming
from hypothesis b (Hb).

Definition 2 A nonnegative kernel Q defined on state space E is
mixing [2] if there exists a constant, 0 < ε ≤ 1 and a nonnegative
measure λ s.t.

ελ(A) ≤ Q(x, A) ≤ 1

ε
λ(A) ∀x ∈ E, ∀ Borel subsets A ⊂ E

For a mixing kernel, the Birkhoff’s contraction coefficient (explained

in [2]), τ ≤ τ̃(ε)
�
= 1−ε2

1+ε2
< 1.

Theorem 1 (Model error bound, Theorem 4.6 of [2]): If for all k,
the kernel Rk,Yk is a.s. mixing (εk > 0, a.s. & τk ≤ τ̃k(εk) <
1, a.s.), then the weak norm between the correct optimal filter den-
sity µt and the incorrect one µ′

t is upper bounded as follows:

sup
φ:||φ||∞≤1

|(µt − µ′
t, φ)|≤δt +

δt−1

ε2t
+

t−2∑
k=1

τ̃t:k+3
δk

ε2k+1ε
2
k+2

�
= θt(δk, εk, 0 ≤ k ≤ t), a.s.

where δk
�
= sup

φ:||φ||∞≤1

|(µ′
k − R̄k,Yk (µ′

k−1), φ)|

Theorem 2 (PF error bound, Theorem 5.7 of [2]): If for all k,
the kernel Rk,Yk is a.s. mixing (εk > 0, a.s. & τk ≤ τ̃k(εk) <
1, a.s.), and supx∈Ex,y

ψk(x) < ∞, a.s., then the weak norm
between the correct optimal filter density µt and the approximation
µN

t (evaluated using the PF) is upper bounded as follows 3:

sup
φ:||φ||∞≤1

Ξpf [|(µt − µN
t , φ)|] ≤ 2√

N
(ρt +

ρt−1

ε2t
+

t−2∑
k=1

τ̃t:k+3
ρk

ε2k+1ε
2
k+2

�
=

βt(ρk, εk, 0 ≤ k ≤ t)√
N

, a.s.

where ρk
�
=

supx∈E ψk,Yk (x)

infµ∈P(E)(Qkµ, ψk,Yk )
< ∞, a.s. (2

Using the above theorems, the total error in estimating posterior
expectation of φ (assuming φ is a bounded function with M =
||φ||∞) can be bounded as

eM,N
t ≤|(πt, φ) − (πb,a

t , φ)| + |(πb,a
t , φ) − (πb,a,N

t , φ)| ≤ Mθt +
Mβt√

N

In a previously submitted work [11], we proved using the results
stated above and some additional assumptions that if the system
model error lasts for a finite time (say [tb : tf ]) 4 and φ is bounded,
the filtering error, eN

t , tends to zero as t → ∞ and for a given t, as
N → ∞. Also if φ is bounded from below but unbounded from
above (or vice versa), one can consider its bounded approximation

φM (x)
�
= min{φ(x), M} and show convergence as M → ∞.

Thus we have limM→∞(limt→∞(limN→∞ eM,N
t )) = 0 in this

case. Although this result was proven for the particular case of the
change detection statistic which is the posterior expectation of an
unbounded function of the state, it actually holds for any function
of the state. We show here that the model error bound θt and the
PF error bound coefficient βt (and hence also the total error 5, eN

t )
are upper bounded by increasing functions of the distance between
the incorrect and correct transition kernels.

2.1. Error Bounds as a function of Distance between Qb
t ,Qa

t

We first define the distance metric, DQ, between the state tran-
sition kernels Qb

t , Qa
t in terms of the distance between their cor-

responding unnormalized filter kernels. We also define another
distance D̃ which measures the total model error in the posterior.

3Ξpf denotes expectation over different realizations of the particle fil-
ter, each of which produces a different random measure πN

t
4even though the model error is for a finite time, it modifies the pdf of

the state Xt (and hence also its posterior πt) permanently.
5For ease of notation, we use eN

t instead of eM,N
t
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Definition 3 We define the distance metric between state tran-
sition kernels Qb

t and Qa
t , DQ,Yt(Q

b
t , Q

a
t ) (or DQ,t), for a given

observation Yt as the following distance between Rb
t,Yt

, Ra
t,Yt

:

DQ,Yt(Q
b
t , Q

a
t )

�
=DR(Rb

t,Yt
, Ra

t,Yt
)

�
=sup

x

∫
E

|Rb
t,Yt

(x, x′) − Ra
t,Yt

(x, x′)|dx′

=sup
x

∫
E

ψt,Yt(x
′)|Qb

t(x, x′) − Qa
t (x, x′)|dx′

DQ,t
6 quantifies the system model error per time step at time t

Definition 4 The total model error in the posterior is defined
as total variation norm of the difference between the posteriors
evaluated using correct and incorrect model scaled by λb

k,Y b
k

(E)

where λb
k,Y b

k

is the invariant measure corresponding to Rb
k,Y b

k

7 :

D̃t,Y0:t

�
=λb

k,Y b
k
(E)||πb,a

t − πb,b
t || (3)

Now we state the main result of this paper (proof in Appendix):

Theorem 3 Assuming (i) Ak > DQ,k and (ii) C > (D̃k−1)/εb
k−

DQ,k, the following holds:

δk ≤ 2DQ,k

Ak
≤ 2DQ,k

C − D̃k−1
εb
k

�
= fδ(DQ,k, D̃k−1)

ρk ≤ supx ψk,Yk (x)

εb,a
k

2
(Ak − DQ,k)

≤ supx ψk,Yk (x)

εb,a
k

2
(C − D̃k−1

εb
k

− DQ,k)

�
= fρ(DQ,k, D̃k−1), a.s.

where Ak
�
= Rb

k,Y b
k
(πb,a

k−1)(E), C
�
= Rb

k,Y b
k
(πb,b

k−1)(E) (4)

i.e. δk and ρk are upper bounded by increasing functions of DQ,k

and D̃k−1. Also fδ is a linear function of DQ,k while fρ is nonlin-
ear (strictly convex), with derivatives of all orders also increasing
so that fδ + fρ also has the same property.
Corollary 3: The above theorem implies that both θt(δk, εb

k, tb ≤
k ≤ t) and βt(ρk, εb,a

k , 0 ≤ k ≤ t) are upper bounded by increas-
ing functions of the vector of distances [DQ,k, k = tb, ...t] and
consequently eN

t is also upper bounded by an increasing function
of [DQ,k, k = tb, ...t] with derivatives of all orders increasing.
Also eN

t increases with t as long as the change persists.

Proof of Corollary: The corollary follows immediately from the
definitions of θt, βt (equations (2) & (2)), the above theorem and
the following three facts: (i)εb

k is independent of DQ,k, (ii) εb,a
k

is a decreasing function of the total model error (shown in [11]) 8

and (iii) D̃k−1 (total model error) is an increasing linear function
of the past model errors per time step [DQ,j , j = tc, ...k− 1] (this
is intuitively obvious, and so we skip the formal proof) and it also
increases with k as long as the change persists.

6We use DQ,t to denote DQ,Y b
t

(Qb
t , Q

a
t ) for ease of notation.

7Scale by λb
k,Y b

k

(E) only for ease of notation in stating the theorem

8with increasing total model error, the overlap between Y b
k and Qa

k

decreases and so the kernel Rb,a
k

becomes less mixing (εb,a
k

decreases)

3. THE CHANGE DETECTION PROBLEM

Consider a nonlinear partially observed system with state transi-
tion kernel Q0

k and probability of observation given state ψk,Yk (x).
Now suppose there is a change in the system model at some un-
known time tc and the state transition kernel becomes Qc

t (un-
known) while the particle filter still uses Q0

t to track the observa-
tions. The aim is to detect the change with minimum delay.

If the change is sudden (large change magnitude per time step,
quantified by DQ,Yk (Qc

k, Q0
k)), and the changed system parame-

ters (Qc
k) are known, log of observation likelihood ratio has been

used to detect it [9]. For unknown change parameters, one can
adapt this to use negative log of observation likelihood (denoted by

OL), OLc,0
k

�
= − log Pr(Y c

k |Y0:k−1, H0) = − log(R0
k,Y c

k
(πc,0

k−1)(E)).
OL exceeding a threshold was used by us [11] to detect a sudden
change. But if the change is slow (change magnitude per time step
is small, so DQ small), OLc,0 does not increase enough to detect
the change. This is because,

OLc,0
k ≤ − log(Ak −DQ,k) ≤ − log(C − D̃k−1

εc
k

−DQ,k) (5)

i.e. it is upper bounded by an increasing function of DQ (follows
by applying inequalities (8) & (9) (in Appendix) with a = 0, b =
c).

To detect such slow changes which get missed by OL, we pro-
posed using “Expected (negative) Log Likelihood” or ELL [3, 11].
ELL is the posterior expectation of the negative log of likelihood
of the state (under prior distribution of the state, p0

t ), i.e.

ELL(Y0:t) = Eπt [− log p0
t (x)] = (πt,− log p0

t ). (6)

It has been shown that when the change becomes detectable and er-
rors in ELL approximation are small enough, ELL will detect the
change correctly most of the time (small miss probability) [11].
Now, approximating ELL for changed observations using a PF op-
timal for unchanged observations fits in the framework of parti-
cle filtering with incorrect model assumptions. Here the model
error per time step corresponds to rate of change (magnitude of
change per time step). The function φ in this case is φ(x) =

− log p0
t (x). Applying corollary 3, the error, ec,0,N

t , in evaluating
ELL(Y c

0:t) is upper bounded by a nonlinear increasing function
(with increasing derivatives of all orders) of the vector of distances
[DQ,Y c

k
(Qc

k, Q0
k), tc ≤ k ≤ t] (distances now quantify the rate

of change). Thus ELL(Y c
0:t) approximation is accurate for slow

changes, for some time (until total change magnitude is small) and
blows up quickly with increasing rate of change or increasing total
change magnitude. Also, for the original system, D0

Q,k = 0 (no
model error) and hence the only source of error, e0,0,N

t , is finite

particle size in PF, i.e. θt = δt = 0 ∀t and ρk ≤ M supx ψk,Yk
(x)

C
√

N
.

3.1. Improving ELL Approximation

Now for change detection to work best (detect change with mini-
mum delay), error in approximating ELL should be small for both
ELL(Y 0

0:t) and ELL(Y c
0:t). Now e0,0,N

t is small (N chosen large
enough), but ec,0,N

t depends on DQ,k being small ∀k ≤ t (change
slow, total change magnitude small). The nonlinearity of the error
bounds, suggests that a small value of both D0

Q,k and Dc
Q,k will

introduce smaller total error e0,0,N
t + ec,0,N

t than D0
Q,k = 0 and

large Dc
Q,k. Thus instead of using Q0

k as the transition kernel in
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particle filtering (Qpf
k = Q0

k) [11], using a Qpf
k that is closer to

Qc
k (even if its distance from Q0

k is not zero) will be a better idea.
If Qc

k is known, one could attempt to use a mixture of Q0
k and Qc

k

as Qpf
k . For unknown Qc

k, one could use Q0
k with a larger system

noise variance as Qpf
k . Both these ideas have been used in past

works on tracking/filtering using a particle filter [10, 5]; we have
in this paper provided a rigorous justification for using them.

4. CONCLUSION

We have upper bounded the approximation error in PF with in-
correct model, by a nonlinear increasing function (with increasing
derivatives of all orders) of the vector of model errors per time step,
[DQ,k, k ≤ t]. We have applied this result to bound errors in ap-
proximating the ELL [3, 11] by a nonlinear increasing function of
the rate of change and suggested ways to improve ELL approxima-
tion based on our result. As part of future work, we intend to study
the change detection performance improvement and the bounds on
approximation errors with (i) learning change parameter on the fly
and (ii) with using ELL of a sequence of past states.

5. APPENDIX

Proof of Theorem 3: For ease of notation, denote supx ψk,Yk (x)
�
=

S. We first prove the following three inequalities below and then
apply them to bound δk, ρk. Note that Rk,Yk = Rb

k,Y b
k

when ap-

plying Theorem 1 (model error bound) but Rk,Yk = Ra
k,Y b

k

when

using Theorem 2 (PF error bound for incorrect model).

||Ra
Y b

k
(πb,a

k−1) − Rb
Y b

k
(πb,a

k−1)||

≤
∫

x

∫
x′
|Ra

Y b
k
(x, x′) − Rb

Y b
k
(x, x′)|πb,a

k−1(x)dx′dx

≤ sup
x

∫
x′
|Ra

Y b
k
(x, x′) − Rb

Y b
k
(x, x′)|dx′

�
= DR(Ra

Y b
k
, Rb

Y b
k
) = DQ,k (7)

Also,

|Ak − Ra
k,Y b

k
(πb,a

k−1)(E)| = |Rb
k,Y b

k
(πb,a

k−1)(E) − Ra
k,Y b

k
(πb,a

k−1)(E)|

≤ ∫
x′ |

∫
x
(Ra

Y b
k

(x, x′) − Rb
Y b

k

(x, x′))πb,a
k−1(x)dx|dx′

= ||Ra
Y b

k

(πb,a
k−1) − Rb

Y b
k

(πb,a
k−1)||

(a)

≤ DQ,k (8)

Inequality (a) follows from of (7).
Next, we lower bound Ak = C − (C − Ak):

C − Ak = |C − Ak|≤||Rb
k,Y b

k
(πb

k−1 − πb,a
k−1)||

(b)

≤
λb

k,Y b
k

(E)||πb
k−1 − πb,a

k−1||
εb
k

�
=

D̃k−1

εb
k

Thus, Ak≥C − D̃k−1

εb
k

(9)

(b) follows from Lemma 3.5 of [2] and mixing property of Rk.

Now we use the above inequalities to bound δk:

δk = sup
φ:||φ||∞≤1

|(πb,a
k − R̄b

Y b
k
(πb,a

k−1), φ)|

≤ ||πb,a
k − R̄b

kπb,a
k−1|| = ||R̄a

Y b
k
(πb,a

k−1) − R̄b
Y b

k
(πb,a

k−1)||

(c)

≤
||Ra

Y b
k

(πb,a
k−1) − Rb

Y b
k

(πb,a
k−1)|| + |Ak − Ra

k,Y b
k

(πb,a
k−1)(E)|

Ak

(d)

≤ 2DQ,k

Ak

(e)

≤ 2DQ,k

C − D̃k−1
εb
k

(10)

Inequality (c) is an application of inequality (6) of [2], (d) follows
by combining (7) and (8) and (e) follows from (9).

Now consider ρk:

ρk

(f)

≤ S

εb,a
k

2
Ra

k,Y b
k

(πb,a
k−1)(E)

(g)

≤ S

εb,a
k

2
(Ak − DQ,k)

(h)

≤ S

εb,a
k

2
(C − D̃k−1

εb
k

− DQ,k)

Inequality (f) follows from Remark 5.10 of [2], (g) follows from
(8) and assumption (i); (h) follows from (9) and assumption (ii).
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