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ABSTRACT

This paper presents an almost sure (a.s.) mean-square performance
analysis of an adaptive Hammerstein filter for the case when the
measurement noise in the desired response signal is a martingale
difference sequence. The system model consists of a series con-
nection of a memoryless nonlinearity followed by a recursive lin-
ear filter. It is shown under the conditions of the analysis that the
long-term time average of the squared excess estimation error of
the adaptive filter can be made arbitrarily close to zero.

1. INTRODUCTION

This paper describes a theoretical performance evaluation of an
adaptive algorithm employing a Hammerstein system model [1].
The system model consists of a series connection of a memoryless
polynomial system followed by a recursive linear system. Even
though different algorithms that adapt the parameters of a Ham-
merstein model can be found in the literature, there are limited or
no convergence and stability analyses for these algorithms. This
work is based on the analysis of a linear adaptive IIR filter in [2].

The input-output relationship of the adaptive filter is given by

d̂(n) =
B̂(n, q−1)

Â(n, q−1)
ẑ(n), (1)

where

Â(n, q−1) = 1 + â1(n)q−1 + · · · + âN (n)q−N , (2)

B̂(n, q−1) = 1 + b̂1(n)q−1 + · · · + b̂M (n)q−M , (3)

and q−1 represents the unit delay operator. In (1), ẑ(n) is the out-
put of the memoryless polynomial nonlinear system and is given
by

ẑ(n) =

L∑
l=1

ŵl(n)xl(n). (4)

In the above equations, ŵl(n), âi(n) and b̂j(n) represent the co-
efficients of the adaptive filter. x(n) is the input signal. The algo-
rithm for adapting these coefficients is given in Table 1. Equation
(1) can be rewritten using vector notation as

d̂(n) = θ̂T
c (n) · Ĥc(n), (5)
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where

θ̂c(n) =
[

â1(n) · · · âN (n) b̂1(n)p̂T (n − 1) · · ·

b̂M (n)p̂T (n − M) p̂T (n)

2L︷ ︸︸ ︷
0 · · · 0

]T

, (6)

Ĥc(n) =
[

−d̂(n − 1) · · · −d̂(n − N) xT (n − 1)

· · · xT (n − M) xT (n)

2L︷ ︸︸ ︷
0 · · · 0

]T

, (7)

p̂(n) =
[

ŵ1(n) ŵ2(n) . . . ŵL(n)
]T

(8)

and
x(n) =

[
x(n) x2(n) . . . xL(n)

]T
. (9)

2. PERFORMANCE ANALYSIS

We assume that the adaptive filter is operating in the system iden-
tification mode, and that the system model matches the unknown
system exactly or overmodels it. The input-output relationship of
the plant is given by

d̃(n) =
B(n, q−1)

A(n, q−1)
z(n), (10)

where z(n) is the output of a static polynomial nonlinear system

z(n) = pT (n)x(n), (11)

and A(n, q−1) and B(n, q−1) are defined appropriately. The pa-
rameters employed above have similar meanings in the context of
the unknown system as the parameters of the adaptive filter. The
desired response signal is a noisy version of the output of the un-
known system, and is given by

d(n) = d̃(n) + ν(n). (12)

In the above equation, ν(n) is an additive noise sequence that is
uncorrelated with the input signal. We also have

d̃(n) = θT
c (n) · Hc(n), (13)

where θc(n), Hc(n), and p(n) are defined similar to (6), (7) and

(8), omitting (̂·) that denotes estimated values.
The a posteriori estimation error ε(n) = d(n) − ĤT (n)θ̂(n)

(the variables Ĥ(n) and θ̂(n) are defined in Table 1) can be shown
to be

ε(n) = e(n)
1

1 + ĤT (n)Λ(n)φ(n)
. (14)
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Substituting (14) in the update equation shown in Table 1 gives us

θ̂(n) = θ̂(n − 1) + Λ(n)φ(n)ε(n). (15)

In order to analyze the algorithm, we transform the equations
into an equivalent, but different functional form. For this, we first
add 2L zeros to the vectors θ̂(n), θ̂(n− 1) and φ(n) in (15) to get

θ̂e(n) = θ̂e(n − 1) + Λe(n)φe(n)ε(n), (16)

where θ̂T
e (n) =

[
θ̂T (n) 0 · · · 0

]
, φT

e (n) is defined similarly

and Λe(n) is a (N + M + 3 · L) × (N + M + 3 · L)-element
matrix. The expanded “step size” matrix Λe(n) contains zeroes in
the last 2 L rows, and (M +L)2L non-zero terms ρi,l(n) in the off
diagonal entries. The ρi,l(n) terms are placed in the 1 to N +M +
L rows of the columns N + M + L + 1 through N + M + 3L.
The new variables ρi,l(n) are finite, but not necessarily positive
quantities as is the case with step sizes µi(n). The new elements
ρi,l(n) are placed at locations such that when Λe(n) is multiplied
with φe(n), the zero entries of φe(n) cancel the ρi,l(n)’s. Thus,
the choice of these variables does not affect the update equation.

Table 1. The adaptive Hammerstein filter.

Definitions

θ̂(n) =
[

â1(n) · · · âN (n) b̂1(n) · · · b̂M (n) · · · ŵL(n)
]T

Ĥ(n) =
[

−d̂(n − 1) · · · − d̂(n − N) ẑ(n − 1) · · ·
ẑ(n − M) x(n) · · ·xL(n)

]T

Λ(n) = diag
[

µ1(n) · · · µN+M+L(n)
]

Main Loop
e(n) = d(n) − ĤT (n) · θ̂(n − 1)

ψ(n) =
[

−d̂(n − 1) · · · − d̂(n − N) ẑ(n − 1) · · ·

ẑ(n − M)

M∑
j=0

b̂j(n)x(n − j) · · ·
M∑

j=0

b̂j(n)xL(n − j)

]T

φ(n) = ψ(n) −
N∑

s=1

âs(n − 1) · φ(n − s)

Verify that {µ(n) · sign(e(n))} is such that filter is
stable. See [1].

θ̂(n) = θ̂(n − 1) + Λ(n)φ(n)

1+ĤT (n)Λ(n)φ(n)
· e(n)

d̂(n) = ĤT (n) · θ̂(n)

It is straightforward to show that there exist vectors θ̂r2(n−1)

and Ĥd(n) such that

Λe(n)φe(n)ε(n) = Λe(n)θ̂r2(n − 1) + Λe(n)Ĥd(n)ε(n).
(17)

We only note at this time that there are more variables in the two
vectors θ̂r2(n−1) and Ĥd(n) than there are equations, and there-
fore a multitude of solutions exists for them. Employing (17) in

(16), we get

θ̂e(n) = θ̂e(n − 1) + Λe(n)θ̂r2(n − 1) + Λe(n)Ĥd(n)ε(n).
(18)

Next, we multiply both sides of the (N +1)th through (N +M)th
entries of (18) with p̂(n − 1), . . . , p̂(n − M), respectively to
obtain

θ̂c(n) = θ̂c(n − 1) + θ̂r(n − 1) + Λc(n)θ̂r2c(n − 1) +

Λc(n)Ĥdc(n)ε(n). (19)

where θ̂r(n − 1) is defined as[
N︷ ︸︸ ︷

0 · · · 0 b̂1(n − 1)
{
p̂T (n − 1) − p̂T (n − 2)

} · · ·

b̂M (n − 1)
{
p̂T (n − M) − p̂T (n − M − 1)

} 3L︷ ︸︸ ︷
0 · · · 0

]T

,

and θ̂r2c(n−1) and Ĥdc(n) are vectors that result when we multi-
ply (N+1)th through (N+M)th entries of θ̂r2(n−1) and Ĥd(n)
with p̂(n − 1), . . . , p̂(n − M), respectively. The (N + ML +
3 ·L)× (N + ML + 3 ·L)-element matrix Λc(n) is obtained by
replacing µN+1(n) through µN+M (n) with (L × L)-element di-
agonal matrices µN+1(n)I, µN+2(n)I, . . . , µN+M (n)I, respec-
tively. Also, each element ρN+1,1(n) through ρN+M,2L(n) of the
matrix Λe(n) is replaced by an (L × 1)-element column vectors
[ρN+1,1(n) · · · ρN+1,1(n)]T through [ρN+M,2L(n) · · ·
ρN+M,2L(n)]T , respectively. Recall that the adaptive filter is
composed of a polynomial with L coefficients and an IIR system
with a denominator and numerator having N and M taps, respec-
tively. With the above transformation, we expanded our original
equation (15) from an (N + M + L)× 1-dimensional equation to
a vector equation (19) with (N +M ·L+3 ·L) dimensions. Let γ
be a positive, finite constant of our choice. It can be shown that we
can choose the “new” entries of Λc(n), and the vectors θ̂r2c(n−1)

and Ĥdc(n) such that the following equality is satisfied in addition
to the equality in (17):

Λc(n)θ̂r2c(n − 1) + Λc(n)Ĥdc(n)ε(n) = −θ̂r(n − 1) +

γĤc(n)ε(n). (20)

Even though (20) contains variables that are not present in the orig-
inal algorithm, the components of (20) that correspond to the orig-
inal adaptive filter have not changed in any way. Therefore, we
can prove the convergence of the algorithm in Table 1 by proving
the convergence of the algorithm given by

θ̂c(n) = θ̂c(n − 1) + γĤc(n)ε(n). (21)

The above equation results from substituting (20) in (19).

2.1. Assumptions

Let c(·) denote generic, finite, positive numbers.

A1: Input signal as well as the noise are bounded with bounds
|x(n)| < cx, ∀n ≥ 0 and |ν(n)| < cν , ∀n ≥ 0.

A2: (i) ‖θc(n)‖ < cθ

(ii) N, M , the orders of the polynomial A(n, q−1) and
B(n, q−1), respectively, are constant, finite and known
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(iii) The unknown plant is exponentially BIBO stable.

A3: Let �(n) = θc(n) − θc(n − 1) denote the increment pro-
cess associated with the unknown system. For some λ,
where 0 < λ < 1, there exists a constant α such that

for all n,
k∑

n=0

λk−n‖�(n)‖2 ≤ α.

A4: Operator A(k, q−1) is input strictly passive [3, 4], i.e., there
exists a positive constant ρ0 such that

n∑
k=0

u(k)
[
A(n, q−1)u(k)

] ≥ ρ0

n∑
k=0

u2(k) (22)

for any real sequence {u(k)}, k ≥ 0. This assumption is a
time-varying version of the well known strictly positive real
condition. Note that ρ0 is independent of the signal u(n).
It only depends on the properties of A(n, q−1).

A5: The noise {ν(n)} is a martingale difference sequence, i.e.
E {ν(n + 1)|Fn} = 0 almost surely (a.s.), and satisfies

sup
n

E
{
|ν(n + 1)|δ|Fn

}
< ∞ (a.s.) for some δ > 2

and lim
m→∞

1

m

m∑
n=1

ν2(n) = σ2
ν (a.s.). In addition, {ν(n)}

is independent of {θ(n)} and {x(n)}. Fn is the σ-algebra
generated by {ν(0), ν(1), . . . , ν(n)}.

2.2. Main Result

We start by rewriting (21) as

θ̂c(n − 1) = θ̂c(n) − γĤc(n)ε(n). (23)

Subtracting θc(n) from both sides, we get

θ̃c(n − 1) = θ̃c(n) + �(n) − γĤc(n)ε(n), (24)

where θ̃c(n) = θ̂c(n) − θc(n). Pre-multiplying both sides of the
above equation with their respective transposes gives

‖θ̃c(n)‖2 = ‖θ̃c(n − 1)‖2 − 2θ̃T
c (n)�(n) +

2γθ̃T
c (n)Ĥc(n)ε(n) −

∥∥∥�(n) − γĤc(n) · ε(n)
∥∥∥2

.(25)

Since
∥∥∥�(n) − γĤc(n) · ε(n)

∥∥∥2

is non-negative, we can drop

this term from the RHS of (25) and then substitute ε(n) = s(n) +
ν(n) to get:

‖θ̃c(n)‖2 ≤ ‖θ̃c(n − 1)‖2 + 2‖θ̃c(n)‖‖�(n)‖ +

2γθ̃T
c (n)Ĥc(n)s(n) + 2γθ̃T

c (n)Ĥc(n)ν(n). (26)

In a manner similar to the derivation in [2], we can show that

θ̃T
c (n) · Ĥc(n) = −A(n, q−1)s(n). (27)

Substituting the above result in (26) gives

‖θ̃c(n)‖2 ≤ ‖θ̃c(n − 1)‖2 + 2‖θ̃c(n)‖‖�(n)‖ −
2γs(n)

[
A(n, q−1)s(n)

]
+ 2γθ̃T

c (n)Ĥc(n)ν(n). (28)

Let Υ̂(n) be an (N + M ·L + 3L)× (N + M + L)-element
matrix defined in such a way that direct multiplications will show

that θ̂c(n) = Υ̂(n)θ̂(n). Pre-multiplying both sides of the adap-
tation equation from Table 1 with Υ̂(n) and simplifying using
θ̂c(n) = Υ̂(n)θ̂(n) and the definition of θ̂r(n − 1) results in

θ̂c(n) = θ̂c(n − 1) + θ̂r(n − 1) +
Υ̂(n)Λ(n)φ(n)e(n)

1 + ĤT (n)Λ(n)φ(n)
.

(29)

Subtracting θc(n) from both sides of (29) gives

θ̃c(n) = θ̃c(n − 1) + θ̂r(n − 1) −�(n) +

Υ̂(n)Λ(n)φ(n)

1 + ĤT (n)Λ(n)φ(n)
e(n). (30)

Direct calculations will show that Υ̂(n)Ĥ(n) = Ĥc(n), and
ĤT (n) = ĤT

c (n)Υ̂(n). Next we use (30) in (28) with the above
equalities to get

‖θ̃c(n)‖2 ≤ ‖θ̃c(n − 1)‖2 + 2‖θ̃c(n)‖‖�(n)‖ − 2γs(n) ·[
A(n, q−1)s(n)

]
+ 2γ

(
θ̃T

c (n − 1) + θ̂T
r (n − 1)

)
Ĥc(n)ν(n) −

2γ�T (n)Ĥc(n)ν(n) + 2γ
ĤT (n)Λ(n)φ(n)

1 + ĤT (n)Λ(n)φ(n)
e(n)ν(n). (31)

Theorem 1 [5]
Let assumption A5 hold, and let f(n− 1) be an Fn−1 measurable
sequence. Then∣∣∣∣∣

m∑
n=1

f(n − 1)ν(n)

∣∣∣∣∣ = ◦
(

m∑
n=1

f2(n − 1)

)
+ ©(1) (a.s.).

For f(n− 1) to be an Fn−1 measurable, we require that f(n− 1)
can be only a function of ν(k), where k < n. In more lax words,
Fn−1 measurability implies that f(n − 1) is a non-anticipative
function of a signal ν(n). Note that an = ◦(bn) implies that
lim

n→∞
an/bn = 0 and an = ©(bn) implies that |an/bn| < cB ,

where cB is a positive number. Then it follows that an = ©(1)
as n → +∞ means that {an} is a bounded sequence.

Since the step size sequence satisfies the Lyapunov conditions
for stability of the system, θ̃(n) and d̂(n) are bounded sequences.
Bounded d̂(n) implies that Ĥ(n) is also bounded. Let cθ̃ and

cĤ denote the upper bounds of ‖θ̃c(n)‖ =

√
θ̃T

c (n)θ̃c(n), and

‖Ĥc(n)‖, respectively, i.e., ‖θ̃c(n)‖ ≤ cθ̃ , ‖Ĥc(n)‖ ≤ cĤ .

Theorem 2 Let assumptions A1-A5 hold. Then

lim
m→∞

sup
1

m

m∑
n=0

(
d(n) − d̂(n) − ν(n)

)2

≤

α
cθ̃

γρ0
+ min (1, |cΛ|) 1

ρ0
σ2

ν (a.s.), (32)

where ρ0 is a parameter from assumption A4, while α was intro-
duced in assumption A3. cΛ is a bound such that

−1 < ĤT (n)Λ(n)φ(n) ≤ cΛ. (33)
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Proof 1 Summing both sides of (31) from n = 1 to m, it follows
that

‖θ̃c(m)‖2 + 2γ

m∑
n=1

s(n)
[
A(n, q−1)s(n)

] ≤ ‖θ̃c(0)‖2 +

2

m∑
n=1

‖θ̃c(n)‖‖�(n)‖ + 2γ

m∑
n=1

(
θ̃T

c (n − 1) + θ̂T
r (n − 1)

)
·

Ĥc(n)ν(n) − 2γ

m∑
n=1

�T (n)Ĥc(n)ν(n) +

2γ

m∑
n=1

ĤT (n)Λ(n)φ(n)

1 + ĤT (n)Λ(n)φ(n)
e(n)ν(n). (34)

Since
(
θ̃T

c (n − 1) + θ̂T
r (n − 1)

)
Ĥc(n) is Fn−1 measurable we

have that∣∣∣∣∣
m∑

n=1

(
θ̃T

c (n − 1) + θ̂T
r (n − 1)

)
Ĥc(n)ν(n)

∣∣∣∣∣ ≤ ◦(m) (35)

almost surely, where we have used the fact that
∥∥∥(

θ̃T
c (n − 1) +

θ̂T
r (n − 1)

)∥∥∥ and
∥∥∥Ĥc(n)

∥∥∥ are bounded for all n ≥ 0. This

is true since θ̃c(n − 1), θ̂r(n − 1), Ĥc(n) are finite, and be-
cause Â(n − 1, q−1) is guaranteed to be stable by our algorithm.
By assumption A5, �(n) is independent of ν(n). It follows that
�T (n)Ĥc(n) is Fn−1 measurable, and by application of Theo-
rem 1 to this sequence gives∣∣∣∣∣

m∑
n=1

�T (n)Ĥc(n)ν(n)

∣∣∣∣∣ ≤ ◦(m) (a.s.). (36)

Similar calculations on the last term of (34) gives the following
result:
m∑

n=1

ĤT (n)Λ(n)φ(n)

1 + ĤT (n)Λ(n)φ(n)
e(n)ν(n) =

m∑
n=1

ĤT (n)Λ(n)φ(n)ν(n)

1 + ĤT (n)Λ(n)φ(n)

(
d̃(n) + ν(n) − ĤT

c (n)θ̂c(n − 1)
)

≤ min (1, |cΛ|)
m∑

n=1

ν2(n) + ◦(m) (a.s.). (37)

Note that Λ(n), which is directly related to γ as described above,
is chosen at time instant n, but independently of the value of ν(n).
We obtained the result in (37) applying similar procedures as used
to obtain (35) and (36). We only comment here on the term
m∑

n=1

ĤT (n)Λ(n)φ(n)

1 + ĤT (n)Λ(n)φ(n)
ν(n)ν(n). Since the algorithm requires

that ĤT (n)Λ(n)φ(n) > −1, and ĤT (n), Λ(n) and φ(n) are all
finite due to the algorithm, we can introduce a bound cΛ such that

−1 < ĤT (n)Λ(n)φ(n) ≤ cΛ. (38)

Using (38) we have∣∣∣∣∣
m∑

n=1

ĤT (n)Λ(n)φ(n)

1 + ĤT (n)Λ(n)φ(n)
ν(n)ν(n)

∣∣∣∣∣ ≤
∣∣∣∣∣

m∑
n=1

cΛ

1 + cΛ
ν(n)ν(n)

∣∣∣∣∣ .

(39)

Noting that cΛ
1+cΛ

≤ min (1, cΛ), we get
∣∣∣∑m

n=1
cΛ

1+cΛ
ν(n)ν(n)

∣∣∣ ≤
min (1, |cΛ|) ∑m

n=1 ν2(n). By assumption A3, ‖�(n)‖ ≤ α.

Since ‖θ̃c(n)‖ ≤ cθ̃ , we have
m∑

n=1

‖θ̃T
c (n)‖‖�(n)‖ ≤ αcθ̃m. (40)

Using (35), (36), (37), (40) and assumption A4 in (34), results in

‖θ̃c(m)‖2 + 2γρ0

m∑
n=1

s2(n) ≤ ‖θ̃c(0)‖2 + 2αcθ̃m +

2γ min (1, |cΛ|)
m∑

n=1

ν2(n) + ◦(m). (41)

Dividing the entire equation (41) by 2γρ0m and taking the limit
as m goes toward infinity, the Theorem 2 is proven. Q.E.D.

|cΛ| depends on Λ(n) and can be made arbitrarily small. As-
suming that the underlying system is time-invariant (i.e., α = 0),
Theorem 2 implies that the long-term time average of the square of
the excess estimation error can be arbitrarily close to zero. That is,
the system can approach the global minimum of the performance
surface with arbitrarily small error. As one would expect the long-
term average of the squared error contributed by the variations of
the parameters of the underlying time-varying system depends on
the strength of coefficient increment process (α), and is inversely
proportional to γ.

3. CONCLUDING REMARKS

A theoretical treatment of a recursive nonlinear adaptive filter de-
veloped in [1] was given in this paper. The convergence behav-
ior of this algorithm was studied in a stochastic framework and in
a non-stationary environment, and in the presence of a possibly
colored and non-stationary measurement noise that is a martin-
gale difference sequence. Using the martingale limit theorem, we
showed that the global minimum on the error surface of our adap-
tive Hammerstein filter can be achieved with arbitrary precision
when the rate of change of the parameters of the underlying plant
is zero. The adaptive system analyzed in this paper does not ac-
count for the Gram-Schmidt orthogonalization of the input signal
as done in [1]. Extension of the analysis to this case is straightfor-
ward.
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