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ABSTRACT

We address the problem of configuring pan-tilt-zoom cam-
eras to track a target maneuvering in three dimensions; in
particular, we propose an adaptive zoom algorithm that min-
imizes target localization errors by adaptively changing the
camera focal length. The target tracker is implemented us-
ing a Rao-Blackwellized particle filter; the camera focal
length is adjusted so that the images of a given percentage
of particles fall onto the camera image plane. The focal
length adjustment is also modified by a confidence factor
that reflects the accuracy of the target position estimate. We
evaluate the performance of the adaptive zoom algorithm
using Monte Carlo simulations. These simulations demon-
strate that the adaptive zoom algorithm has a smaller aver-
age squared position estimate error than a comparable fixed
zoom algorithm.

1. INTRODUCTION

Sensor configuration is currently an area of significant re-
search interest; development of agile sensors, coupled with
considerable increases in available computing power, have
significantly increased the performance impact of configu-
ration strategies. This is evident in recent work [1, 2, 3]
involving the configuration of one or more foveal sensors to
track a moving target. In this paper, we adapt these foveal
sensor configuration algorithms to the problem of config-
uring pan-tilt-zoom cameras to track a target maneuvering
in three dimensions. In particular, we propose an adaptive
zoom algorithm that minimizes localization errors by adap-
tively changing the focal length of the camera. Zooming
in onto a target enhances the localization accuracy. How-
ever excess ‘zoom-in’ can result in a target ‘loss’ (when the
target image falls off the image plane). An excess ‘zoom-
out’ can inhibit the ability of the camera to provide accurate
estimates.

The configuration algorithm uses a particle filter that is
based on a constant-velocity target dynamics model and on
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a simple three-dimensional camera geometry model. The
adaptive zoom algorithm adjusts the camera focal length
until a given percentage of projected particles fall onto the
image plane; the focal length is also adjusted by a confi-
dence factor that influences and is influenced by whether the
zooming algorithm is aggressive or conservative. The pro-
posed algorithm, which we call the Adaptive Zoom Tech-
nique for Enhanced Capture (AZTEC), uses two cameras
to track a point target and is discussed in detail in the fol-
lowing sections. The 3-D camera geometry is elucidated in
Section 2. Section 3 provides the dynamic motion and ob-
servation models used to implement the recursive Bayesian
filter. Section 4 describes the proposed algorithm. Section 5
illustrates the potential benefits of this algorithm relative to
constant zoom through simulation results. Conclusions are
made in Section 6 .

2. 3-D CAMERA GEOMETRY

We now consider the relationship between the target posi-
tion and the location of its image when projected onto a
camera image plane [4, 5]. We use a pin-hole camera model,
and do not consider distortion or other issues that arise in
real optical systems. The target state (position and veloc-
ity) is formulated in a three-dimensional Cartesian coordi-
nate system denoted the World Coordinate System (WCS).
The camera imaging geometry is formulated in terms of
the camera’s reference frame called the Camera Coordinate
System (CCS); the relationship between the CCS and the
WCS is defined in terms of several transformation matrices.

A point target located at Aw = (Xw, Yw, Zw) in the
WCS and Ac = (Xc, Yc, Zc) in the CCS is projected onto
a point a = (x, y) on the camera image plane. We first con-
sider the projection from Ac to a and then the relationship
between Ac and Aw. The projection from Ac to a is a per-
spective transformation which can be expressed using linear
transformations and homogeneous coordinates. If ã is the
homogeneous representation of a 2-D point a, then

ã = (x, y, z) ⇔ a = (
x

z
,
x

z
)
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Fig. 1. Standard Perspective Projection

Similarly, if Ã is the homogeneous representation of the
three dimensional point A, then

Ã = (X, Y, Z, U) ⇔ A =

(
X

U
,
Y

U
,
Z

U

)

Let Oc be the center of projection which is at the ori-
gin (0, 0, 0). The image plane Π of the camera has dimen-
sions 2ω × 2ω; it is parallel to the xy-plane of the CCS
and at a distance λ along the camera’s principal axis (the
zc-axis) (Fig. 1). λ is the focal length of the camera. A
point Ac = (Xc, Yc, Zc) in the CCS is projected to a point
a = (x, y) on the image plane. The relationship between a
and Ac is given by Thales theorem:

x =
λXc

Zc

, y =
λYc

Zc

(1)

Using homogeneous coordinates, (1) can be written as

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1/λ 0

⎤
⎦

⎡
⎢⎢⎣

Xc

Yc

Zc

1

⎤
⎥⎥⎦ (2)

or in matrix notation, ã = T Ãc.

• Ãc is the homogeneous representation of Ac.

• T is the camera projection matrix (also called the in-
trinsic parameter matrix).

In general, the CCS is not aligned with the WCS. [5]
explains how a point in the WCS is projected into the CCS.
This requires the application of a translation matrix G that
translates the origin of the WCS to that of the CCS located

at (gx, gy, gz) followed by a rotation matrix R to align the
two coordinate systems. Rotation of the coordinate system
is performed by first rotating by an angle β about the y-axis
and then an angle α about the x-axis. If the center of the
image plane is not located on the zc-axis, we model this
displacement as an image displacement matrix C. Finally,
the perspective projection matrix T projects the resulting
CCS coordinate onto the 2-D image plane:

ã = TCR GÃw (3)

Here, G =

⎡
⎢⎢⎣

1 0 0 gx

0 1 0 gy

0 0 1 gz

0 0 0 1

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

1 0 0 cx

0 1 0 cy

0 0 1 cz

0 0 0 1

⎤
⎥⎥⎦,

R=RαRβ =

⎡
⎢⎢⎣

cosβ 0 − sinβ 0
sin α sin β cosα sin α cosβ 0
cosα sin β − sinα cosα cosβ 0

0 0 0 1

⎤
⎥⎥⎦

3. TARGET AND OBSERVATION MODELS

We denote the target state at k as xk, and define it to be
the target’s three-dimensional position and velocity in the
WCS:

xk =
[

Awk+1
Ȧwk+1

]T

The target dynamics are modeled by a discrete-time constant-
velocity state equation of the form

xk+1 = F · xk + wk (4)

where F =

[
I3 ∆t · I3

03 I3

]
, ∆t is the time between mea-

surements and wk ∼ N (0, Qk).
Let ajk be the projection of Awk

(the target location at
time k) onto the image plane of camera j, j = 1, 2:

ãjk = TCjRjGjÃwk

The measurement model is

Zk =

[
Z1

k

Z2
k

]
=

[
a1k

a2k

]
+ vk (5)

Here vk ∼ N (0, Rk) and models errors associated with
the process of determining the target location on the image
plane (e.g. due to pixelation noise, image processing, and
errors in camera calibration). Note that the measurements
Zk, k = 1, 2, . . . are a function only of the target position.
We assume that the observation errors for the 2 cameras are
independent:

p(Zk|Ak) = p(Z1
k |Ak) · p(Z2

k |Ak) (6)
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4. CAMERA CONFIGURATION ALGORITHM

We implement the tracker with a Rao-Blackwellized Parti-
cle Filter (RBPF) [6]. To configure the camera at time k,
the particle filter provides a predicted target location and
(through the spread of the particles) a measure of the un-
certainty of this predicted target location. Both cameras are
pointed at the predicted target location; the focal lengths
of the cameras (and hence the cameras’ zooms) are set so
that the camera image plane contains a set percentage of
the particles’ images. In this paper, we adapt the zooms
of both cameras based on computations performed for only
one camera; thus, in this section we drop the explicit enu-
meration of cameras. The camera configuration algorithm
could be extended to adapt the zoom of each camera inde-
pendently.

The algorithm that configures the camera focal length at
time k begins with the previous camera focal length λk−1.
The particle filter predicts the particles ahead from k − 1

to k, creating a set of particles
{
x

i
k

}N

i=1
; the particles are

then projected onto the image plane using λk−1. The focal
length is adjusted so that approximately κ% of the projected
particles lie within the bounds of the image plane; the ad-
justed focal length is denoted λ′

k . The adjusted focal length
is then weighted by a confidence factor fc to set the camera
focal length λk that will be used to obtain the observation
Zk. We now give the mathematical details of this process.

We choose λ′

k as follows. Let Ai
wk

be the position com-

ponent of particle x
i
k and let Ai

ck
=

[
X i

ck
Y i

ck
Zi

ck

]T

be the projection of Ai
wk

onto the CCS. From (1), for a given
λk−1, the projection of Ai

ck
onto the image plane is

xi
k = λk−1

X i
ck

Zi
ck

, yi
k = λk−1

Y i
ck

Zi
ck

Define ri
k =

√
(xi

k)
2

+ (yi
k)

2, and let ī be the index of the

κ-percentile (with κ ranging from 90% to 95%) value of ri
k .

Note that ī is not a function of λk−1. To keep the target
within the camera field of view with high probability, we
choose λ′

k as the largest value that satisfies both

ω ≥ λ′

k

∣∣∣∣∣
X ī

ck

Z ī
ck

∣∣∣∣∣ , ω ≥ λ′

k

∣∣∣∣∣
Y ī

ck

Z ī
ck

∣∣∣∣∣ (7)

The updated focal length λk, which is used to acquire
Zk, is the product

λk = λ′

k fck−1
(8)

Here fck−1
is the confidence factor that reflects our belief

that the target was imaged at time k − 1. The confidence
factor is determined using

fck−1
= e−γ·σk−1 (9)
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Fig. 2. Plot showing fck
as a function of σk for various

values of γ

where γ is a settable parameter that determines how ‘con-
servative’ or ‘aggressive’ the zooming will be. σ2

k−1
is the

trace of the empirical covariancematrix of the particles {xi
k−1

}
projected onto the observation plane with focal length λk−1.
Fig. 2 shows that smaller γ values give larger fck−1

values
and consequently more aggressive zooming.

The focal length λk is used to obtain Zk using (5). The
weights are computed using (6). If the target is ‘lost’ (i. e.
the target image does not fall within the image plane), then
the particles are re-weighted; the weights of the particles
whose projections fall on the image plane are set to zero.
The algorithm is summarized in Table 1.

5. SIMULATION RESULTS

We evaluated the performance of the AZTEC algorithm by
Monte Carlo simulations in which two cameras were placed
at (50, 25,−25) and (50,−50, 300); both camera displace-
ments were C = 0. Simulations were run for two cases: (i)
a constant focal length and (ii) a focal length adapted by the
AZTEC algorithm. Different values of γ were used to in-
vestigate the effect of aggressiveness in zooming. We used
the following parameter values: ∆t = 2, R = I2, ω = 6,

N = 300, and Q =

[
(∆t3/3)I3 (∆t2/2)I3

(∆t2/2)I3 (∆t)I3

]
. One

hundred Monte Carlo iterations were performed. The simu-
lation results (Fig. 3 and Fig. 4) show that AZTEC performs
significantly better than the constant zoom method. Since in
this scenario, the target is moving away from the two cam-
eras, highly aggressive zooming (γ =0.1) gives the best per-
formance while highly conservative zooming (γ = 1) gives
an average performance that is still better at long distances
than when the zoom is constant.
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Table 1. Target Tracking Algorithm

1. Generate {xi
0}

N
i=1 from p(x0) and set {wi

0}
N
i=1 = 1

N
.

2. Choose initial values for the confidence factor fc0
and

focal length λ0.

3. Set k = 1.

4. Predict x
i
k ∼ p(xk|xi

k−1
), {i = 1, 2, . . . , N} using

RBPF [6].

5. Point the cameras to the predicted target position.

6. For each x
i
k project Ai

k (the position component of
x

i
k) on to the image plane of the camera using (3),

then compute ī.

7. Compute λk using (7) and (8).

8. Re-project Ai
k onto the image plane using λk to ob-

tain ai
k, and compute σ2

k .

9. Compute fck
using (9).

10. Obtain the measurement Zk.

11. Compute the importance weights using (6). Compute
the estimated target state.

12. Perform re-sampling using [7].

13. Set k ← k + 1 and go to step 4.

6. CONCLUSIONS

In this paper, we have proposed the AZTEC algorithm that
adjusts the zoom of two cameras to track a target with a
Rao-Blackwellized Particle Filter. The AZTEC algorithm
estimates the target state with lower average squared error
than constant zoom.
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