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ABSTRACT

In this paper, four sampling schemes for sequential detec-
tion in colored noise are introduced. Two of them use uni-
form sampling procedureswith high and low sampling rates,
respectively. The other two employ groups of samples, which
are separated by long inter-group gaps such that the inter-
group correlations are negligible. Their performances, in
terms of average termination time, are derived analytically.
Under the assumption that all the schemes have the same
power and sampling interval (x), their efficiencies are com-
pared through analytical and numerical methods. Our re-
sults show that the scheme using group sampling with an
optimal signal is the most efficient.

1. INTRODUCTION

In many detection applications, the sensor has a very low
signal to noise ratio (SNR) and a decision can not be made
with high reliability based on a single sample. To improve
the detection performance, detection can be performedbased
on multiple observation samples. A powerful multiple-sample
detection procedure is Wald’s sequential probability ratio
test (SPRT) [1]. It is well known that to get a required
detection performance, SPRT, on an average, needs much
fewer samples than fixed-sample-size (FSS) detection pro-
cedures. However, the SPRT is based on the assumption of
independent and identically distributed (i.i.d.) samples. In
practice, this assumption does not always hold and needs to
be relaxed. In [2, 3], authors have shown that the optimum
sequential detector for dependent samples is in the form of
a generalized sequential probability ratio test (GSPRT). In
[4], the SPRT and the sequential linear detector (SLD) are
compared in an autoregressive noise. The author has shown
that when correlation is positive, the SLD outperforms the
SPRT.

In all the works mentioned above, authors have assumed
that the data have already been discretized via uniform tem-
poral sampling. We will tackle this problem from a system-
design point of view. To reduce the negative effect of or
even take advantage of the correlation between samples, we

explore several sampling schemes. Two of them use uni-
form sampling procedures. The other two are based on the
group sampling ideas. For all the schemes, the samples are
manipulated such that they can still be processed by the sim-
ple framework of a SPRT. We will show that the scheme
using group sampling with an optimal signal is much more
efficient than other schemes.

2. SYSTEM MODEL AND SPRT

We consider a binary hypothesis problem:

�� � ���� � � � ����

�� � ���� � ���� (1)

where ���� is the received observation, � is the amplitude
of the signal, and ���� is a wide-sense stationary Gaussian
random noise, with zero mean and autocorrelation function

����� � ����
���
� (2)

where 	 indicates the rate at which the correlation decays.
In this section, Wald’s SPRT is introduced briefly. The

successive observations ���
 ��
 � � � ��� are assumed to be
i.i.d. The lower and upper thresholds of the SPRT, � and
�, can be determined by the desired type I and type II error
probabilities ( and �), as follows
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At each stage �, the summation of the log-likelihood ratios
is computed:
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and then compared with the thresholds as follows:
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� � stop and decide ��

� � stop and decide ��

otherwise continue
(5)
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Fig. 1. Four sampling schemes in colored noise.

3. SAMPLING SCHEMES

The four sampling schemes are shown in Fig. 1. We assume
that �� � �� � �� � �.

3.1. Uniform Sampling at High-Rate

The most common procedure is to uniformly sample ����, as
shown in Fig. 1. After sampling, we have a digital detection
problem:

�� � � � �� � ��

�� � � � �� (6)

where � � ����� � � � ������, �� � ����� � � �������, and ��
is the constant amplitude of the signal.

With ���� being stationary, it is easy to show that �� is
also stationary with autocorrelation

��	� � 
����� (7)

where � � ��
�
� is the correlation coefficient between ad-

jacent samples. The noise with this kind of autocorrelation
function can be modeled as an autoregressive sequence:

�� � � � ����� �� � �� �� � � � � � (8)

where the sequence ��� is i.i.d. and

� � � �	� ��� ���
�� (9)

In addition, �� � � �	� 
��.
To employ the framework of the SPRT, we use a whiten-

ing filter to make the samples i.i.d., which is a differentia-
tion process:

�� � �� � ����� (10)

Therefore, the new sequential detection problem becomes

�� � �� � ��� ���� � �

�� � �� � � (11)

With (9), it is easy to show that the log-likelihood ratio for
each sample is

�� �
���

�� � ��
�
�

��� ����
�

��� � ��
�
(12)

Therefore,

�������� � ��������� �
��� ����

�

��� � ��
�
(13)

For simplicity, we assume that � � �. Thus, � � ��, and
the average sample numbers (ASN) are the same under both
hypotheses �� and ��. According to Wald’s first equation
[1], the ASNs for this problem are

�������� � �������� �
���� ������ � ��
�

��� ����
�

(14)

To facilitate the comparison between different schemes,
we define a new metric, the average termination time (ATT),
which is the average time needed before either threshold (�
or �) is crossed. The ATT for Scheme A is thus

�������� � �������� �
���� ������ � ��
��

��� ����
�

(15)

For a fair comparison, we assume a constant signal power
� for all the sampling schemes. Therefore, the scheme with
a smaller ATT consumes less energy and is more efficient.

For Scheme A, the power is � �
�
�

�

�
and (15) becomes

����� �
���� ����
�

�
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�
�

�� ��
�
�

(16)

Obviously, ����� is a monotone decreasing function of �.
When � � � (or approximately � � � ), ����� tends to
�����, which we will derive next. This implies that Scheme
A is always less efficient than Scheme B.

3.2. Uniform Sampling at Low-Rate

In this scheme (Scheme B), as shown in Fig. 1, the sam-
pling rate is low enough such that the correlation between
adjacent samples are negligible, meaning that,

��
�
� 	 � (17)

where � is the sampling interval and � is a very small con-
stant. Therefore, samples can be taken as i.i.d. and a stan-
dard SPRT can be used to perform hypothesis testing

�� � �� � �� � ��

�� � �� � �� (18)
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where �� is the signal amplitude and ���� is assumed to be
an i.i.d. Gaussian sequence with zero mean and variance � �.
It is easy to obtain the log-likelihood ratio for each sample:

�� �
����� � ���

���
(19)

Therefore,

�������� � ��������� �
���
���

(20)

The ASN for this case is

����� �
���� ���	��

���
(21)

The ATT is, therefore

��
�� �
���� ���	���

���
(22)

Substituting the power � �
�
�

�

�
into (22), we have

��
�� �
���� ���	��

�
(23)

3.3. Group Sampling with Constant Amplitude

The scheme (Scheme C) is illustrated in Fig. 1. Within each
individual group, uniformly spaced samples are collected.
The inter-group gap T, identical to that defined in Section
3.2, is large enough so that the inter-group correlation is
negligible. Note that a similar scheme based on grouping
consecutive samples has been used by authors in [5].

The samples within each group are combined to form
a super sample, these super samples can be taken as i.i.d.
and processed by a SPRT. We denote the amplitude of each
sample as ��, and the number of samples of each group as
 . The hypothesis testing problem is

�� � �� � �� � ���

�� � �� � ��� (24)

where �� � ����� � � � � ��� ��, �� � ����� � � � � ���, and ��� �
����� � � � � ��� ��, which follows a Gaussian distribution:

��� � � ��	� 
� (25)

where
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...
...
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...
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�
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(26)

The log-likelihood ratio of each super sample (� �) is

�� � ���
��
� �

�

�
���
���� (27)

Therefore,

�������� � ��������� �
�

�
���
���� (28)

An explicit solution of 
�� is available in [6], with which
and (28), we can derive that

�������� �
���

����� � ��
� � � � ���� (29)

The ASN for this scheme is

����� �
���� ���	���� � ��

���� � � � ����
(30)

and the ATT is

��
�� �
���� ���	���� � ��

��� � � � � ����
�� � ���� � � (31)

Plugging � �
��

�

�

�������� into (31), we have
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(32)

Again, ��
�� is a monotone decreasing function of �.
When � � �, ��
�� � ��
��. Therefore, Scheme C is
always less efficient than Scheme B. It is easy to show that

� � ��
�

�
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�

�
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�

�

�� ��� �
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�

�

(33)

Therefore, Scheme C is always more efficient than Scheme
A. Also, ��
�� is a monotone increasing function of N and
as  ��,

� � ��
�

�

�� ��� �
�
���

�

�

�
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�

�

�� ��
�

�

(34)

Therefore, when is very large, the performance of Scheme
C will converge to that of Scheme A. As we can see, Scheme
C’s efficiency lies somewhere between Schemes A and B.

3.4. Group Sampling with Optimal Signal Waveform

This scheme (Scheme D) is still based on the group sam-
pling idea as in Scheme C. The difference is that the constant-
amplitude signal within each group is replaced with an op-
timal signal. According to [7], for a FSS detection problem,
under a fixed energy constraint, the optimal signal that max-
imizes the SNR at matched filter output is the eigenvector of
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the noise covariance matrix corresponding to the minimum
eigenvalue. For example, if group size � � �, we have

� � ��
�

� �

� �

�

(35)

The optimal signal, which is the eigenvector with minimum
eigenvalue, is in the form of ��� � ���, as shown in Fig. 1
for the case � � �.

It is clear that the covariance matrix is the same as (26).
We denote its minimumeigenvalue and corresponding eigen-
vector as ���� and �����, respectively. Similar to the deriva-
tion of (27), we have the log-likelihood ratio of each super
sample is

�� � �������
��
� �

�

�
�������

������� (36)

Hence,

�������� � ��������� �
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�����������
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(37)

The ASN for Scheme D is

��	�� �
���� �
������

�����������

(38)

and the ATT is
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������

�����������
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Plugging � �
���

���
�����

�������� into (39), we have

����� �
���� �
����

�

����

��
(40)

From (40), it is clear that the ATT is proportional to ����.
���� can be calculated numerically. However, we do not
show the results here due to the limited space. Basically,
���� is a monotone increasing function of , meaning that
the smaller the sampling interval, the better the performance
is. This is because that smaller sampling interval gives rise
to higher correlation between samples, with which the scheme
can do a better noise cancelation. In addition, ���� is a
monotone decreasing function of� , meaning that the larger
the group size, the better the performance.

4. NUMERICAL RESULTS AND DISCUSSION

Without loss of generality, we assume �������	
�

�
� � and

� � �. We take � � �	�� and hence � � 
����. The ATTs
for different schemes, are plotted in Fig. 2. It is evident that
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Fig. 2. Average termination times for different schemes.

Scheme A has the worst efficiency (largest ATT). Scheme
D has the best performance, especially when sampling rate
is high and group size N is large. It is also noteworthy that
when � � , all the schemes converge to Scheme B.

With the identical signal power, Schemes B, C and D
are more efficient than Scheme A, especially when the cor-
relation between samples is strong, and Scheme D has the
highest efficiency among all the schemes.
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