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Figure 1(a) shows a 3x3 window mask over a pixel, in which there

are eight orientations, 0o, 45o, 90o, 135o, 180o, 225o, 270o, 315o.

Figure 1(b) shows the 4-neighbor connectivity of the pixel X by

four pixels labeled by 1, 3, 5, 7 referred to as the first-order

neighboring pixels. The additional four pixels labeled by 2, 4, 6, 8 

located along two diagonal lines are referred to as second-order

neighboring pixels as shown in Fig. 1(c).

Abstract

A texture analysis approach of using an improved texture feature

coding method (TFCM) and the Support Vector Machines (SVM)

for target detection is presented in this paper. Preliminary test on

mammogram showed over 88% of normal mammograms and 85%

of abnormal mammograms were correctly identified. Automatic

target detection with a Cascade-Sliding-Window (CSW) technique

is also discussed.
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1. Introduction 

Automatic Target Recognition has many applications. Detection of

land mines, mass graves, weapon concealment, etc. is hard by

visual inspection of images collected from various airborne

sensors. In some cases, it was observed that ground breaking will 

cause soil texture change and hence observation of texture

difference from surroundings may indicate the presence of land

mine, mass graves, weapon concealment, etc [1].  In medical

practices, it is an objective that an anomaly be correctly identified

from a mammogram without false alarms. Many researches have 

been conducted in this perspective by using imaging texture

analysis [2]. Fig. 1 First-order and second-order 4-neighbor connectivity

TFCM is a new texture analysis scheme which transforms an 

original image into a text feature image whose pixels represent

texture feature numbers. This coding scheme has several

remarkable advantages, including more accurate representation of

texture information, more computationally efficient, better capture

of texture information by incorporating higher-order gradient

information, etc [3].  SVM is a learning and classification tool

originated from modern statistical learning theory [4]. It is a kernel

based learning algorithm and relies on the borderline training

samples to define the separation hyperplane. Its performance is 

better than most learning systems for a wide range of applications

including automatic target recognition, image detection, and

document classification.

TFCM method considers three consecutive pixels along these

specific directions, and calculates gradient changes in gray levels

among these three pixels [3]. Denote three consecutive pixels by

their spatial coordinates at a, b, c and associated gray levels by

I(a), I(b) and I(c) respectively, and let  be a desired gray level

tolerance. There are four types of successive gradient changes in

gray level with their corresponding graphic descriptions given in 

Fig. 2. 
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This paper focuses on the investigation of the potential benefit of

using TFCM and SVM for target detection. Section 2-4

summarizes the TFCM approach, the feature descriptor, and the

SVM classification method. Experimental results using

mammograms are reported in Section 5. Finally, concluding

remarks are given in Section 6. 
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 or 

2. Texture Feature Coding Method

The concept of the TFCM method is derived from the gray-level

co-occurrence matrix [5] and texture spectrum method [6]. It was 

first developed by Horng [3]. Some of the major points of this 

algorithm are briefly described here. Fig. 2 Types of gray-level graphical structure variations
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If we introduce a pair of integers (a,b) to represent the gray-level

variations of first-order and second-order connectivity,

respectively, and consider the symmetry between first scan line

and second line of first-order or second order connectivity, the

number of each connectivity combinations can be reduced to

4(4+1)/2=10, as shown in Table 1. 

where is the number of pairs of two pixels at spatial

locations (x,y) and (w,z) satisfying TFN code level I(x,y) = i, I(w,z)

=j and d-pixel apart along angular rotation  is

the total number of TFN transitions.

, , ( , )dN i j

, ,,
( , )dl k

N l k

3. Statistical Texture Feature Descriptors
Table 1 Combination coding of the gray-level variations
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In order to capture the essence of texture information of an image,

a set of texture feature descriptors was developed to represent the

kernel texture information of the image. Here we introduce eleven 

descriptors. Some of them are well known [3][7], and some are

specially designed for the mammogram data.

The first two feature descriptors are derived from the TFN

histogram of an image.

1. Mean convergence
54

0

)(

n

npn
MC . (4)

Furthermore, if we ignore the difference between the first order

and second order connectivity, we can define the text feature

number , of the pixel at location (x,y) according to

Table 2.

( , )TFN x y   2. Code variance Var (5))(
54
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2
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n

The remaining descriptors are based on the TFN co-occurrence

matrix. Here we fixed 1d and used the average of four matrices,

corresponding to , ,  and ,

respectively. That is:

00 045 090
0135

Table 2 Texture Feature Number Generation Table
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),(where dP is the TFN co-occurrence matrix with respect to d

and .Based on P , we define the following features 
d,

3. Code entropy CE (6)),(log),( ,
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It is worth mentioning that this coding scheme has three unique

properties. First, the TF  is quasi-rotation-invariant

because the symmetry is considered during coding. Second, since

only takes a value ranging from 0 to 54, the

calculation of a TFCM based co-occurrence matrix of an image

and some of its corresponding TFCM features will take less time.

Third, the code value at a given pixel represents the coarseness in

its neighborhood. The higher the code value is, the more gray-level

variations its corresponding pixel possesses. All aforementioned 

properties are very important as they capture essence of the texture

around a specific pixel.
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5. First-order element difference moment (FDM)
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6. Second-order element difference moment (SDM)

(9)
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7. First-order inverse element difference moment (FIDM)
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After a TFN feature image is obtained by TFCM, there are two

measures, i.e., TFN histogram and TFCM-based Co-occurrence

matrix, to characterize its statistics. A TFN histogram is defined as
8. Second-order inverse element difference moment (SIDM)
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9. Energy Distribution of Co-occurrence Matrix 
where is the total number of TF in the image

taking value n, and is the gray-level variation tolerance given in

(1). The TFN based co-occurrence matrix, which is a probability

distribution of transitions between any pair of arbitrary two TFNs, 

can be defined as 

. ( )TFNN n ( , )N x y The following three features are the summations of different

regions of the co-occurrence matrix.
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Their summation regions are depicted in Fig. 3. 
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Fig. 3. Summation regions of different subband probabilities.

As a result, each image in the database is represented by an 11 x 1

feature vector. Since some of the features usually have large

magnitudes and others have small magnitudes, we scale different 

feature elements such that each feature contributes roughly equally

to the SVM. For the mammogram data, the scaling factors were,

scale = [1,  1,  20,  1E4,  1,  10, 100,  100,  100, 100,  100].

4. Support Vector Machines and Classification Steps

According to references [8-10], the key elements in the

implementation of SVM are the mathematical programming and 

kernel functions. SVM parameters are found by solving a quadratic

programming problem with linear equality and inequality

constraints; rather than by solving a non-convex, unconstrained

optimization problem. The flexibility of kernel functions allows

the SVM to search a wide variety of hypothesis spaces. The

geometrical interpretation of support vector classification (SVC) is 

that the algorithm searches for the optimal separating surface, i.e.

the hyperplane that is, in a sense, equidistant from the two classes.

A simple example of 2-D data classification with three different

classes using SVM is shown in Fig. 4, where the optimal

boundaries are found between each pair of classes. 

Fig. 4 SVM classification results of three classes 

In our study, a Matlab toolbox was developed to perform image

texture analysis and classification. The TFCM-SVM training and

testing procedures are brief summarized.

1. Prepare N training images with known ground truth.

Associate each image with an integer class label, for

example, 0, 1, 2,…N, as required by the OSU-SVM.

2. Perform TFCM on each image to obtain a feature image

with its element being TFN numbers.

3. Calculate a TFN histogram for each feature image.

4. Calculate a TFCM co-occurrence matrix for the same

feature image

5. Calculate the 11 texture feature descriptors using Eqs.

(9) to (17) to represent the image being processed

6. Form all the image feature vectors into a 11xN matrix,

regarded as the input matrix. Align their class labels to a 

1xN row output vector.

7. Use the input and output pair to train the OSU-SVM.

The result is stored in a set of vectors and matrices.

In the test stage, the first six steps still applicable to a test image,

while in the last step, the trained support vector machine outputs a 

label vector for the test image.

5. Mammogram Inspection Using TFCM-SVM 

Our first case study is focused on mammogram inspection using

the TFCM-SVM. The database is the MiniMammographic

Database provided by the Mammographic Image Analysis Society

(MIAS). In our simulation study, 69 normal mammogram images

and 55 abnormal images containing different abnormalities were

segmented from the database. The abnormal regions belong to 5

abnormal categories:

13 architectural distortions (ARCH),

10 asymmetry tissues (ASYM),

12 circumscribed masses (CRIC),

11 speculate masses (SPEC),

9 other/ill-defined masses (MISC).

In the simulations, we run the TFCM method on the above five 

categories of well-defined/circumscribed masses, speculated

masses, architectural distortion (ad), asymmetry, and other/ill-

defined masses and some sample images are shown in Fig. 5.

CRIC (001) (012) (025)

ASYM (097) (099) (104)

ARCH (117) (155) (158)

SPEC (181) (186) (206)

MISC (134) (144) (264)

Fig. 5 Five categories of abnormal images, each begins with their 

label and image number in the library.

Fig. 6 Normal training images
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All normal images are 128x128 in size whereas the image size for

the abnormal images varies as the area of the abnormal region

differs from one case to another. Figure 6 shows some of the 

normal training images.

Image of interest

TFN histogram and TFCM

eigen-vector feature vector

extraction

Cascade sliding window of size

NxN segmentation

SVM classification

NxN Window segmented

normal image

NxN Window segmented

abnormal image

TFN histogram and TFCM

eigen-vector feature vector

extraction

SVM classifier training

Classification parameters

Normal/Abnormal?
A

N
Mark the windowed image with

the white frame
Image done?

N

Y

After obtaining the features of each image in the database, we use

the SVM to perform the classification. The performance of the

SVM is affected by two parameters, namely the kernel parameter

 and the regularization parameter C .

Table 3 Performance of TFCM-SVM with 100C

Fig. 7 Flow chart of the TFCM-SVM-CSW algorithm

Table 4 Performance of TFCM-SVM with 1 4E

Fig. 8 Anomaly detection and localization in mammograms with

CSW
In Table 3, we fix C as 100, and show the results with 1 3E

4

,

, and , respectively. The cross validation

method was used in the training and test. It can be observed that

the best classification result is obtained with . In this

case, the algorithm yields 90% correct decision for normal data

and 80% correct classification for abnormal data. The overall

correct decision rate is 85%. We then fix

1E 4 51E

1E

 as 1 4E  and vary

the value of C. The results are summarized in Table 4, which

shows that the best performance if given by C 1 4E and

. Although the classification performance of normal

data is slightly reduced, the performance for abnormal data is 

improved, and the overall correct classification rate increases to

87%. The effect of SVM parameters can also be clearly observed

from these tables. For a given regularization parameter C , larger

kernel parameter

1E 4

leads to less training errors. However, the

generalization capability of the SVM to test data is reduced. But if

becomes too small, the two classes would be too close to each

other, and the performance will also degrade. In a short, there is an 

optimal combination of the two SVM parameters, which can be

obtained during experiment through try-and-error.

6. Conclusions

A texture analysis algorithm using texture feature coding method

(TFCM) and the support vector machines (SVM) for target

detection is developed. Preliminary test on mammogram showed

over 88% of normal mammograms and 85% of abnormal

mammograms were correctly identified. Cascade-Sliding-Window

(CSW) technique showed great potential for automatic target

detection.
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