
DENSITY ASSISTED PARTICLE FILTERS FOR STATE AND PARAMETER ESTIMATION

Petar M. Djurić, Mónica F. Bugallo

Dept. of Electrical and Computer Engineering
Stony Brook University

Stony Brook, NY, 11794, USA
{djuric,monica}@ece.sunysb.edu

Joaquı́n Mı́guez

Dept. of Electrónica e Sistemas
Universidade da Coruña
Facultade de Informática,
15071 A Coruña, Spain

jmiguez@udc.es

ABSTRACT

In recent years the theory of particle filtering has continued to
advance, and it has found increasing use in sequential signal
processing. A weakness of particle filtering is that it is inadequate
for problems that besides tracking of evolving states require the
estimation of constant parameters. In this paper, we propose
particle filters that do not have this limitation. We call these
filters density assisted particle filters, of which special cases are
the recently introduced Gaussian particle filters and Gaussian sum
particle filters. An implementation of a density particle filter
is shown on a relatively simple but important nonlinear model.
Simulations are included that show the performance of this filter.

1. INTRODUCTION

In the past decade, particle filtering has become an important
tool for sequential signal processing. Its advantage over other
sequential methods is particularly distinctive in situations where
the used models are nonlinear and the involved noise processes
are non-Gaussian. The underlying idea of particle filtering is
the approximation of densities by random measures, which are
represented by samples (particles) from the space of the unknowns
and weights associated with the particles. An important feature
in the implementation of particle filters (PFs) is that the random
measure is recursively updated. With the random measure, one
can compute various types of estimates with considerable ease.

The theory of PFs has been well established, and its
fundamentals and important applications can be found, for
example, in [2] and [7]. A more recent review of the theory and
a set of applications in wireless communications are presented
in [1]. PFs have three important operations, sampling, weight
computation, and resampling. With sampling, one generates a set
of new particles that represents the support of the random measure,
and with weight computation, one calculates the weights of the
particles. Resampling is an important operation because without
it PFs yield very poor results. With resampling one replicates
the particles that have large weights and removes the ones with
negligible weights.

This work was supported by the National Science Foundation under
Award CCR-0082607.

This work was also supported by Xunta de Galicia, the Ministry of
Science and Technology of Spain and the FEDER funds of the European
Union (project TIC2001-0751-C04-01)

The resampling entails a problem that is referred to as particle
attrition. It is particularly emphasized in cases when the used
models have fixed parameters. As the recursions progress with
time, unless special steps are undertaken, the size of the particle
set of fixed parameters decreases and very quickly is depleted.
This deficiency of the PFs has been recognized and addressed in
the past, for example in [3] and [8], and more recently in [6]. In
these approaches, the idea is to introduce artificial evolution of the
particles and thereby treat them in more or less the same way as
the dynamic states of the model.

In two recent companion papers, new class of particle filters
has been developed. They have been called Gaussian particle
filters (GPFs) and Gaussian sum particle filters (GSPFs). The
GPFs approximate the predictive and filtering densities of the PF
by Gaussian densities whose parameters are estimated from the
particles and their weights. Similarly, the GSPFs approximate
these densities with mixtures of Gaussians. The approximating
densities can be other than Gaussians or mixtures of Gaussian,
and therefore we call these filters Density Asissted Particle Filters
(DAPFs). They have a very attractive feature in that they do
not use resampling in the sense carried out by standard PFs.
This entails appealing advantages when considering hardware
implementations of PFs. Another important advantage of these
filters is that they do not share the limitation of the standard PFs
regarding the estimation of constant model parameters.

In this paper, the emphasis is on DAPFs for combined
estimation of evolving states and constant parameters. In
Section 2, we describe the general setting of the problem and in
Section 3, we briefly comment on PFs and their advantages and
disadvantages. Then, in Section 4 we present the DAPFs and
outline their basic operations. We make our case about using
DAPFs for state and parameter estimation in Section 5, where
we elaborate on an interesting example by providing details of
the filter’s implementation. Finally, in Sections 6 and 7, we show
simulation results and make concluding remarks, respectively.

2. GENERAL PROBLEM SETTING

Many dynamic problems can be represented using the state space
representation

xt = ft(xt−1, θ,ut)
yt = gt(xt, θ,vt)

II - 7010-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

where xt is a state vector, yt is a vector of observations, ut and
vt are noise vectors, θ is a vector of unknown parameters, ft(·)
is a system transition function, gt(·) is a measurement function,
and the subscript t denotes time index, where t ∈ Z

+. These
two equations are known as state and observation equations. The
analytical forms of the functions and the distributions of the two
noise vectors are known. Based on the observations yt and the
assumptions, the objective is to estimate xt and θ recursively. In
Bayesian context, this amounts to updating important densities of
interest like the filtering density at time t−1, p(xt−1, θ|y0:t−1), to
p(xt, θ|y0:t), where the notation y0:t signifies {y0,y1, · · · ,yt}.

3. PARTICLE FILTERING

Particle filtering is a methodology that allows for sequential
processing of data by recursive updating of the densities of interest.
These densities are the filtering, predictive or smoothing densities
of the unknowns. In particle filtering they are all approximated
by random measures composed of particles (samples from the
state and parameter spaces of the unknowns) and weights. Let
χt = {x(m)

t , θ
(m)
t , w

(m)
t }M

m=1 be the random measure at time t,
x

(m)
t and θ

(m)
t the particles of xt and θ, respectively, and w

(m)
t

their associated weights. Note that here we denoted the particles
of θ with a subscript t, which does not mean that these parameters
evolve dynamically, but simply that they may represent a different
set at t from the one at t − 1.

In updating the random measures with every new measure-
ment, PFs perform three important operations, (1) sampling, (2)
importance computation, and (3) resampling. The sampling oper-
ation represents drawing particles from a proposal function, the
importance computation assigning weights to the particles, and
resampling, replicating particles with dominating weights at the
expense of particles that have negligible weights. An important
feature of PFs is that they can perform tracking of dynamic state
variables with ease as opposed to estimation of fixed parameters.
In the latter situations, if the fixed parameters are nuisance param-
eters, their integration, if possible, is the best solution. In many im-
portant cases, however, the integration is analytically intractable.
In other problems, the fixed parameters may be of significance,
and their estimation of utmost importance.

In problems with constant parameters, one may enforce
artificial evolution of the parameters and apply a standard PF
[3], use the kernel smoothing procedure from [8], or exploit the
auxiliary particle filtering based method from [6]. A common
feature of these methods is that they impose artificial evolution
of the fixed parameters. Here we propose to use DAPF which
can cope with constant parameters more naturally than the above
methods.

4. DENSITY ASSISTED PARTICLE FILTERING

Recently, new types of PFs have been proposed, referred to as
Gaussian particle filters (GPFs) [4]. These PFs approximate
the predictive, p(xt|y0:t−1), and filtering, p(xt|y0:t), densities
by Gaussians whose mean vectors and covariance matrices are
computed from the particles. Suppose that at time t − 1 we
approximate the filtering density by N (µt−1,Σt−1). Then, the

steps of a simple implementation of the GPF are as follows:

1. Draw particles according to x
(m)
t−1 ∼ N (µt−1,Σt−1).

2. Draw particles according to x
(m)
t ∼ p(xt|x(m)

t−1).
3. Compute the weights of the particles by

w̃
(m)
t = p(yt|x(m)

t).

4. Normalize the weights by

w
(m)
t =

w̃
(m)
t∑M

j=1 w̃
(j)
t

.

5. Estimate µt and Σt by

µt =
M∑

m=1

w
(m)
t x

(m)
t

Σt =

M∑
m=1

w
(m)
t

(
x

(m)
t − µt

) (
x

(m)
t − µt

)�

which are the parameters of the Gaussian density that
approximates p(xt|y0:t).

A distinctive feature of GPFs is that they do not require resam-
pling, which is important in hardware implementation because the
resampling operation complicates hardware architectures. The re-
sampling in GPFs is replaced by sampling from a Gaussian, which
as a procedure is much simpler. In a companion paper, [5], the ap-
proximating densities are modeled as mixture Gaussians that pro-
vide more flexibility in capturing the shapes of the predictive and
filtering densities.

In general, as noted in [4], the approximating densities can be
any appropriate parametric densities. We refer to PFs that exploit
predefined approximating densities as to density assisted particle
filters. If we denote the approximating density of p(xt|y0:t−1) by
pf (φt), where φt are the parameters of this density, the steps of
the DAPF are the following:

1. Draw particles according to x
(m)
t−1 ∼ pf (φt−1).

2. Draw particles according to x
(m)
t ∼ p(xt|x(m)

t−1).

3. Compute the weights of the particles by

w̃
(m)
t = p(yt|x(m)

t).

4. Normalize the weights by

w
(m)
t =

w̃
(m)
t∑M

j=1 w̃
(j)
t

.

5. Estimate the parameters φt from x
(m)
t and w

(m)
t , m =

1, 2, · · · , M .

We point out here that DAPFs do not share the problem of
standard PFs regarding constant parameters. This is clear because
in the first step when the particles are drawn from pf (xt−1, θt−1|
y0:t−1) there is a natural evolution of the particles of θt−1. We
present the implementation details of DAPF on models that have
fixed parameters by way of an example.

II - 702

➡ ➡

5. EXAMPLE

We investigate a very specific and rather simple but important
problem. It can be described as follows:

xt = axt−1 + ut (1)

yt = bxt + vt (2)

where 0 < a < 1, b, xt ∈ R, and ut and vt are independent
white Gausian noises with zero mean and variances σ2

u and σ2
v ,

respectively. The unknowns of interest are the evolving state
xt and the parameters a and b. Thus, in our previous notation,
θ = [a b]�.

The density of interest is the posterior

p(at, bt, xt|y0:t) = p(xt, bt|at, y0:t)p(at|y0:t).

We approximate it by using

p(at, bt, xt|y0:t) � N (µt,Σt)Be(αt, βt) (3)

where the first density on the right hand is bivariate Gaussian
and the second is beta density. The predictive density
p(at, bt, xt|y0:t−1) is approximated by

p(at, bt, xt|y0:t−1) � 1/M
M∑

m=1

p(xt|x(m)
t−1)δ(bt−b

(m)
t−1)δ(at−a

(m)
t−1)

where δ(·) denotes the Dirac delta function. A straightforward
application of the DAPF has the following steps:

1. Draw a
(m)
t−1 ∼ Be(αt−1, βt−1).

2. Draw (x
(m)
t−1, b

(m)
t−1) ∼ N (µt−1, Σt−1).

3. Draw x
(m)
t ∼ p(xt|x(m)

t−1, a
(m)
t−1).

4. Let a
(m)
t = a

(m)
t−1 and b

(m)
t = b

(m)
t−1.

5. Compute the weights of the generated particles by

w̃
(m)
t = p(yt|x(m)).

6. Normalize the weights w̃
(m)
t .

7. Compute the parameters of the approximating densities.

Before we explain the generation of particles in steps 1 and 2,
we note that the beta density is defined as

p(a) =
1

B(α, β)
aα−1(1 − a)β−1I(0,1)(a)

where α > 0 and β > 0. The mean and variance of a are given by

µa =
α

α + β

σ2
a =

αβ

(α + β)2(α + β + 1)
.

If we know the mean and the variance of a, we can estimate α and
β from

α =
µ2

a(1 − µa)

σ2
a

− µa (4)

β =

(
µa(1 − µa)

σ2
a

− 1

)
(1 − µa) . (5)

This suggests that it is straightforward to generate particles from a
beta density whose first two moments are predefined.

The generation of the particles a
(m)
t−1, b

(m)
t−1, and x

(m)
t−1, in steps

1 and 2 proceeds as follows. When at time t − 1 the computation
of particle weights in step 6 is completed, we estimate the mean
vector and the covariance matrix of the filtering density given by

µ̃t−1 =

⎡
⎣ µt−1,x

µt−1,b

µt−1,a

⎤
⎦

and

Σ̃t−1 =

⎡
⎣ σ2

t−1,xx ρt−1,xb ρt−1,xa

ρt−1,xb σ2
t−1,bb ρt−1,ba

ρt−1,xa ρt−1,ba σ2
t−1,aa

⎤
⎦ .

First we draw a
(m)
t−1 from Be(αt−1, βt−1) whose parameters are

estimated from (4) and (5), where µ = µt−1,a and σ2 = σ2
t−1,aa.

The particles x
(m)
t−1 and b

(m)
t are obtained from

x
(m)
t−1 = At−1,1z

(m)
t−1,1 + Bt−1,1z

(m)
t−1,2 + Ct−1,1a

(m)
t−1 + Dt−1,1

b
(m)
t−1 = At−1,2z

(m)
t−1,1 + Bt−1,2z

(m)
t−1,2 + Ct−1,2a

(m)
t−1 + Dt−1,2

where zt−1,1 and zt−1,2 are independent standard Gaussian
random variables, which are also independent from a

(m)
t−1, and the

coefficients At−1,i, Bt−1,i, Ct−1,i, Dt−1,i, i = 1, 2 are chosen so
that the mean and covariance matrix of [xt−1 bt−1 at−1]

� are
preserved. It can be shown that the following set of coefficients
can be used:

At−1,1 = ±
√

σ2
t−1,xx − C2

t−1,1σ
2
t−1,aa

At−1,2 =
ρt−1,xb − Ct−1,1Ct−1,2σ

2
t,aa

At−1,1

Bt−1,1 = 0

Bt−1,2 = ±
√

σ2
t−1,bb − C2

t−1,2σ
2
t−1,aa − A2

t−1,2

Ct−1,1 =
ρt−1,xa

σ2
t−1,aa

Ct−1,2 =
ρt,ba

ct−1,aa

Dt−1,1 = µt−1,x − µt−1,aCt−1,1

Dt−1,2 = µt−1,b − µt−1,aCt−1,2.

In summary one first generates a
(m)
t−1, followed by drawing zt−1,1

and zt−1,2 from the standard normal distribution, followed by
computing x

(m)
t−1 and b

(m)
t−1 using the above transformation.

II - 703

➡ ➡

6. SIMULATION RESULTS

In this section we provide simulation results obtained for the
problem described in the previous section. The parameters of
the model were a = 0.9 and b = 2. The noise variances σ2

u

and σ2
v were set to one. There were 100 observations available,

and the number of particles was M = 200. The initial particles
were drawn as follows: x

(m)
0 ∼ N (x1, 3), b

(m)
0 ∼ N (1, 2), and

a
(m)
0 ∼ U(0, 1).

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

t

x(
t)

true state
DAPF
LW

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

t

x(
t)

true state
DAPF
LW

Fig. 1. Tracking plots of two different realizations. In the
second plot, the LW method switched to estimating the mirror state
trajectory.

We compared the proposed method with the one of Liu and
West described in [6]. For that method, we used the same priors
for generation of initial particles. It should be noted that this
problem is inherently ambiguous due to the product bxt in the
observation equation. For some realizations, the methods can
switch to tracking the mirror trajectory of xt, −xt, rather than
xt, and estimate −b instead of b. We point out that this problem
was much more rarely observed with the proposed method than
with that of Liu and West. Sample trackings of the methods are
presented in Figure 1.

In Figure 2, we observe the mean square errors (MSEs) of the
estimated states and parameters of the two methods as functions of
time. These estimates were obtained from 50 realizations.

7. CONCLUSIONS

In this paper we described a special class of particle filters which
we call density assisted particle filters. Their main feature is
that they approximate the filtering density with a predefined
parametric density. We showed an important advantage of DAPFs
over standard PFs in problems where the addressed models have
constant parameters. With a judicious choice of approximating
densities, one can develop DAPFs that handle the problem of fixed
parameters with ease and that yield excellent performance.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

t

M
S

E
(x

(t
))

DAPF
LW

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

t

M
S

E
(a

)

DAPF
LW

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

t

M
S

E
(b

)

DAPF
LW

Fig. 2. Comparison of the MSEs of the states and the parameters
between DAPF and the LW method.

8. REFERENCES

[1] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai,
M. F. Bugallo, and J. Mı́guez, “Particle filtering: A review
of the theory and how it can be used for solving problems
in wireless communications,” IEEE Signal Processing
Magazine, vol. 20, no. 5, pp. 19–38, 2003.

[2] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential
Monte Carlo Methods in Practice, Springer, New York, 2001.

[3] N. J. Gordon, D. J. Salmond, and A. F. M. Smith,
“Novel approach to nonlinear/non-Gaussian Bayesian state
estimation,” IEE Proceedings-F, vol. 140, no. 2, pp. 107–113,
1993.

[4] J. Kotecha and P. M. Djurić, “Gaussian particle filtering,”
IEEE Transactions on Signal Processing, vol. 51, no. 10, pp.
2592–2601, 2003.

[5] J. Kotecha and P. M. Djurić, “Gaussian sum particle filtering,”
IEEE Transactions on Signal Processing, vol. 10, no. 10, pp.
2602–2612, 2003.

[6] J. Liu and M. West, “Combined parameter and state estimation
in simulation-based filtering,” in Sequential Monte Carlo
Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon,
Eds., pp. 197–223. Springer, 2001.

[7] J. S. Liu, Monte Carlo Strategies in Scientific Computing,
Springer, New York, 2001.

[8] M. West, “Mixture models, Monte Carlo, Bayesian updating
and dynamic models,” Computer Science and Statistics, vol.
24, pp. 325–333, 1993.

II - 704

➡ ➠

