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ABSTRACT

We propose a sequential M -estimation algorithm as an alternative
to sequential least squares. Being an approximation of the exact
M -estimator, the proposed technique is robust to non-Gaussian
processes and outperforms sequential least squares. Simulation
results demonstrate the power of the proposed sequential M -estimator.

1. INTRODUCTION

Consider the linear signal model,

y = Hθ + x, (1)

where y ∈ R
N is the observation vector, H ∈ R

N×P is the
system matrix, θ ∈ R

P is the vector of P unknown parameters to
be estimated, and x ∈ R

N is the noise vector, with a non-Gaussian
density function f(x). Specifically, we are interested in the case
where f(x) can be described by the ε-contaminated model

f(x) = (1 − ε)fG(x; ν2) + εI(x), (2)

where ε represents the contamination percentage, ν2 is the vari-
ance of the Gaussian background, fG is the zero-mean Gaussian
distribution, and I(x) is some unknown symmetric function rep-
resenting the impulsive part of the noise.

In many situations, the observations y1, y2, . . . , yn arrive se-
quentially. It is of practical interest to compute the estimate of the
unknown parameter vector for a small number of observations and
then update the estimate whenever a new observation arrives. The
goal of this work is to derive the update of the parameter estimates
for non-Gaussian noise. The signal model for the nth observation
becomes

y[n] = H [n]θ + x[n], (3)

and for the next observation

y[n + 1] = [y1, y2, . . . , yn, yn+1]
T =

[
y[n]
yn+1

]
, (4)

H [n + 1] =

⎡
⎢⎢⎢⎣

hT
1

hT
2

...
hT

n+1

⎤
⎥⎥⎥⎦ =

[
H [n]
hT

n+1

]
=

[
n × P
1 × P

]
. (5)

∗This research work was partly supported by the Australian Telecom-
munications CRC.

When the noise is purely Gaussian, i.e. ε = 0, the following
sequential LS algorithm is optimum in the maximum likelihood
sense [5].

θ̂[n + 1] = θ̂[n] + K [n + 1]
(
y[n + 1] − hT

n+1θ̂[n]
)

, (6)

K [n + 1] =
Σ[n]hn+1

ν2
n + hT

n+1Σ[n]hn+1

, (7)

Σ[n + 1] =
(
I − K [n + 1]hT

n+1

)
Σ[n], (8)

Σ[n0] =
(
HT [n0]C

−1[n0]H [n0]
)−1

(9)

where C [n0] = diag(ν2
1 , ν2

2 , . . . , ν2
n0), and ν2

1 , ν2
2 , . . . , ν2

n are the
variances of the noise at observations 1, 2, . . . , n. It is normally
assumed ν2

1 = ν2
2 = . . . = ν2

n = ν2. However, in the presence of
non-Gaussian noise, Gaussian-optimised solutions are not robust
[2, 4, 9]. In robust statistics, instead of using the quadratic LS cost
function, a less increasing cost function ρ(x) is used. Under regu-
larity conditions, the robust estimate of the unknown parameter θ
for the signal model (3) is found by solving the M -equations

H [n]T ψ (y[n] − H [n]θ) = 0P , (10)

where ψ(x) = ∂ρ(x)/∂x is the score function, and ψ (y[n] − H [n]θ)
represents a vector whose ith entry is ψ(yi −hT

i θ), and hT
i is the

ith row of H [n] [4, 9]. Designing score functions is the key to
robust estimation. Note that the Gaussian-optimised solution can
be derived from (10) with the score function ψ(x) = x/ν2. One
well-known score function for the ε-contaminated noise model is
the minimax score function [2]

ψ(x) =

{
x
ν2 for |x| ≤ kν2

ksign(x) for |x| > kν2,
(11)

where k is dependent on ε and ν via

φ(kν)

kν
− Q(kν) =

ε

2(1 − ε)
, (12)

in which φ(x) = 1√
2π

e−x2/2 and Q(x) = 1√
2π

∫ ∞
x

e−t2/2dt [9].
When ε and ν are known, the minimax score function can be con-
structed.

In Section 2, we derive a robust sequential algorithm for updat-
ing the estimate of the vector of unknown parameters θ in (1) when
the noise is non-Gaussian under the framework of robust statistics.
In Section 3, we present some simulation results to illustrate the
use of this technique. Section 4 concludes the paper.
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2. SEQUENTIAL M -ESTIMATION

2.1. The algorithm

The robust estimates of θ at the nth and (n + 1)th observations
satisfy the following M -equations

HT [n]ψ
(
y[n] − H [n]θ̂[n]

)
= 0P (13)

and

HT [n + 1]ψ
(
y[n + 1] − H [n + 1]θ̂[n + 1]

)
= 0P . (14)

Denoting

gθ [n + 1] = HT [n + 1]ψ (y[n + 1] − H [n + 1]θ) , (15)

and using Taylor series expansion up to the first order of gθ [n+1]

around θ̂[n], we have

gθ [n + 1] = gθ̂[n][n + 1] +
∂gθ [n + 1]

∂θ

∣∣∣∣∣
θ=θ̂[n]

(
θ − θ̂[n]

)
.

(16)
Noting that gθ̂[n+1][n + 1] = 0P and rearranging (16), we have

θ̂[n + 1] = θ̂[n] − J [n + 1]gθ̂[n][n + 1], (17)

where

J [n + 1] =

⎛
⎝∂gθ [n + 1]

∂θ

∣∣∣∣∣
θ=θ̂[n]

⎞
⎠

−1

. (18)

To derive the update for J [n + 1], given J [n], we define zi(θ) =
yi −hT

i θ, i = 1, 2, . . . , n, n + 1, and start from the definition of
the gradient of a row vector [8]

∂gθ [n + 1]

∂θ
= HT [n + 1]

∂

∂θ

⎡
⎢⎢⎢⎣

ψ
(
y1 − hT

1 θ
)

ψ
(
y2 − hT

2 θ
)

...
ψ

(
yn+1 − hT

n+1θ
)

⎤
⎥⎥⎥⎦

= HT [n + 1]

⎡
⎢⎢⎢⎣

∇T
θ ψ(z1(θ))

∇T
θ ψ(z2(θ))

...
∇T

θ ψ(zn+1(θ))

⎤
⎥⎥⎥⎦

= HT [n + 1]

⎡
⎢⎢⎢⎣

hT
1 γ(z1(θ))

hT
2 γ(z2(θ))

...
hT

n+1γ(zn+1(θ))

⎤
⎥⎥⎥⎦

= HT [n + 1]Cθ [n + 1]H [n + 1], (19)

where ∇θψ(x) =
[

∂
∂θ1

ψ(x), . . . , ∂
∂θP

ψ(x)
]T

denotes the gradi-

ent of a scalar function ψ(x) with respect to θ and

Cθ [n + 1] = diag

(
γ(z1(θ)), γ(z2(θ)), . . . , γ(zn+1(θ))

)

=

⎡
⎢⎢⎢⎣

γ(z1(θ)) 0 . . . 0
0 γ(z2(θ)) . . . 0
...

...
...

...
0 0 . . . γ(zn+1(θ))

⎤
⎥⎥⎥⎦ ,(20)

and we have assumed that γ(x) = −∂ψ(x)/∂x exists. Define

F θ [n + 1] =
(
HT [n + 1]Cθ [n + 1]H [n + 1]

)−1

=

([
H [n]
hT

n+1

]T [
Cθ [n] 0
0T γ(zn+1(θ))

] [
H [n]
hT

n+1

])−1

=
(
HT [n]Cθ [n]H [n] + γ(zn+1(θ))hn+1h

T
n+1

)−1

. (21)

Noting that zn+1(θ) = yn+1 − hT
n+1θ, and using Woodbury’s

identity [5], we have

F θ [n+1] = F θ [n]−γ
(
yn+1 − hT

n+1θ
)
F θ [n]hn+1h

T
n+1F θ [n]

1 + γ
(
yn+1 − hT

n+1θ
)
hT

n+1F θ [n]hn+1

.

(22)
Further, with

J [n + 1] = F θ̂[n][n + 1], (23)

J [n] = F θ̂[n−1][n], (24)

and the possibility of inferring F θ̂[n][n + 1] from F θ̂[n][n] using
Equation (22), the task then is to find a relation between F θ̂[n−1][n]

and F θ̂[n][n]. Continuing, we have

F θ̂[n][n] =
(
HT [n]C θ̂[n][n]H [n]

)−1

, (25)

F θ̂[n−1][n] =
(
HT [n]C θ̂[n−1][n]H [n]

)−1

, (26)

where

C θ̂[n−1][n] = diag
(
γ(z1(θ̂[n − 1])), . . . , γ(zn(θ̂[n − 1]))

)
(27)

and

C θ̂[n][n] = diag
(
γ(z1(θ̂[n])), . . . , γ(zn(θ̂[n]))

)
. (28)

Denoting
δC θ̂[n] = C θ̂[n][n] − C θ̂[n−1][n], (29)

we have

F θ̂[n][n] =
(
HT [n]C θ̂[n]H [n]

)−1

=
(
HT [n]C θ̂[n−1]H [n] + HT [n]δC θ̂[n]H [n]

)−1

=
(
F −1

θ̂[n−1]
[n] + HT [n]δC θ̂[n]H [n]

)−1

. (30)

To proceed, we will make use of the following result [1]

B−1 = A−1 − B−1(B − A)A−1. (31)

Assuming that the difference between B−1 and A−1 is negligible,
we propose to modify the above identity to obtain the following
approximation

B−1 ≈ A−1 − A−1(B − A)A−1. (32)

Substituting
B = HT [n]C θ̂[n][n]H [n], (33)

A = HT [n]C θ̂[n−1][n]H [n], (34)
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Fig. 1. Minimax and modified minimax performance.

and noting from the result above that

B − A = HT [n]δC θ̂[n]H [n], (35)

F θ̂[n−1][n] =
(
HT [n]C θ̂[n−1][n]H [n]

)−1

, (36)

we have

F θ̂[n][n] =
(
HT [n]C θ̂[n]H [n]

)−1

(37)

= F θ̂[n−1][n]
(
I −

(
HT [n]δC θ̂[n]H [n]

)
F θ̂[n−1][n]

)
,

which is the relation of interest. Finally, it is noted that

gθ̂[n][n + 1] =

[
HT [n]
hn+1

]T

ψ

([
y[n]
yn+1

]
−

[
H [n]
hT

n+1

]
θ̂[n]

)
= hn+1ψ(yn+1 − hT

n+1θ̂[n]), (38)

since by definition HT [n]ψ(y[n] − H [n]θ̂[n]) = 0.
Hence, the sequential M -estimation algorithm can be sum-

marised as follow.

• Compute δC θ̂[n] = C θ̂[n][n] − C θ̂[n−1][n], where the di-
agonal matrices are defined in (27) and (28).

• Compute

F θ̂[n][n] = J [n]
(
I −

(
HT [n]δC θ̂[n]H [n]

)
J [n]

)
.

• Update the vector

J [n + 1] = F θ̂[n][n]

−
γ

(
yn+1 − hT

n+1θ̂[n]
)

F θ̂[n][n]hn+1h
T
n+1F θ̂[n][n]

1 + γ
(
yn+1 − hT

n+1θ̂[n]
)

hT
n+1F θ̂[n][n]hn+1

.

• Update the parameter estimates

θ̂[n + 1] = θ̂[n] − J [n + 1]hn+1ψ(yn+1 − hT
n+1θ̂[n])
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Fig. 2. Relative minimax and modified minimax performance.

To use the sequential updates, one must start with some robust
estimate of the unknown parameter for a given number of obser-
vations n0, i.e. by solving the following M -equations

gθ [n0] = HT [n0]ψ
(
y[n0] − H [n0]θ̂[n0]

)
= 0P . (39)

Numerical procedures for solving M -equations can be found, for
example, in [4, 7, 6, 9]. For identifiability reason [3, 7], n0 >
P , where P is the number of parameters. If the total number of
observations N >> P , it is recommended to select n0 ≥ 4P [3].

2.2. Remarks

We note that while the sequential LS algorithm yields the exact up-
dates, the proposed sequential M -estimation technique only pro-
vides approximate updates. This is because of the difficulty when
dealing with the nonlinearity of the score function ψ(x). In par-
ticular, we have used Taylor series expansion approximation and
a matrix inversion approximation. By doing so, we have also im-
plicitly assumed that the estimates are reasonably close to the true
value in a sense that these approximations are satisfactory. Fi-
nally, it has been assumed in the derivation that γ(x) exists. For
the minimax score function this assumption does not hold at the
corner points. It can be resolved by smoothing the minimax score
function as described in [9]. The modified minimax score function
is reproduced here for convenience.

ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩

x
ν2 if |x| ≤ (k − η)ν2

k − η + η tanh
(

x−(k−η)ν2

ην2

)
if x > (k − η)ν2

−(k − η) + η tanh
(

x+(k−η)ν2

ην2

)
if x < −(k − η)ν2

where η << k is a small number. However, it is found in the
example considered that there is not much difference between the
performance of the modified and the original minimax score func-
tions.
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Fig. 3. Performance of the minimax and ML algorithms.

3. SIMULATION RESULTS

In this section, we give one example to illustrate the proposed se-
quential M -estimation algorithm. The impulsive part of the noise
I(x) is modelled by another Gaussian function I(x) = fG(x; κν2)
where κ >> 1. This is particularly relevant to non-Gaussian in-
terference encountered in radio communications [9]. In the simu-
lation, we select ε = 0.1, and κ = 100. The number of unknown
parameters P = 6, the total number of observations N = 63, and
we choose the starting point of the sequential M -estimation algo-
rithm to be n0 = 24 according to the guideline discussed above.

In this Monte-Carlo simulation, we measure the average of
(θ̂[n] − θ)T (θ̂[n] − θ) where θ is the true value of the parame-
ter vector. We also compare this with the one obtained by directly
solving the M -equations at each observation. The simulated detec-
tor schemes include the minimax detector, the modified minimax
detector with η = 0.1, and the maximum likelihood (ML) detector
with the score function being ψ(x) = −f ′(x)/f(x) [9]. To illus-
trate the robustness issue, we also include the performance of the
sequential LS algorithm.

As shown in Fig. 1, with the current settings, there is no ap-
parent difference between the performance of the two minimax
detectors. This can be intuitively explained that the probability for
the residuals to fall in the corner regions is relatively small with
the current choice of η. Another observation is that the sequen-
tial M -estimate is very close to the exact M -estimates obtained
directly from solving the M -equations. Fig. 2 magnifies the dif-
ference between (θ̂[n] − θ)T (θ̂[n] − θ) of the sequential and the
exact ones for the minimax and the modified minimax detectors.
Note that since we start with a robust estimate, the difference is 0
at n0 = 24. It is of interest to notice that the difference between
the sequential and exact M -estimates becomes smaller as more
observations are available.

In Fig. 3 and Fig. 4, we show the performance of the sequen-
tial M -estimation algorithm for the minimax and ML detectors,
and the sequential LS algorithm. As can be shown, even though the
sequential LS estimate converges in a global sense, its error is sig-
nificantly higher than those of the robust sequential M -estimates.
This can be theoretically explained because the exact M -estimate
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Fig. 4. Performance of the sequential LS technique.

has smaller error than the LS estimate of the full model, i.e. when
n = N , in non-Gaussian noise, the sequential versions should also
behave similarly.

4. CONCLUSION

A sequential M -estimation algorithm has been presented. Even
though it serves as an approximation of the exact M -estimation
one, the accuracy is desirable. It is also concluded that the orig-
inal minimax detector can still be used ignoring the discontinuity
problem of γ(x) at the corner points with nearly no loss in per-
formance. Under the framework of M -estimation, the algorithm
proposed here has been demonstrated to be robust against non-
Gaussian noise.
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