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ABSTRACT

Estimation of the parameters of an unknown system is an 

important problem in signal processing. The classical Mean 

Squared Error (MSE) criterion and its variants have been widely

used to solve this problem. However, it is well known that MSE 

criterion produces biased parameter estimates when the signals

of interest (especially the input) are corrupted with additive

noise having arbitrary or no coloring (white). Alternative 

approaches require additional system constraints and explicit 

estimation of the noise covariances. Recently, we proposed a 

new criterion called the Error Whitening Criterion (EWC) along

with associated algorithms that solved the problem when the 

additive disturbances are white. However, the performance of

EWC is not satisfactory when the disturbances are correlated

(colored). In this paper, we propose a method based on the

principles of EWC that can consistently estimate the parameters

of an unknown arbitrary linear system in colored input noise 

without estimating the noise covariances. We then present a

novel stochastic gradient algorithm that estimates the optimal 

parameters in an on-line fashion. We will briefly discuss the

convergence of this algorithm and present extensive simulation

results to show the superiority of this criterion over MSE. 

1. INTRODUCTION 

Parameter estimation or system identification is a very important

problem in signal processing and control. The framework for the 

conventional approaches that solve this problem is typically

built around the popular Mean Squared Error (MSE) criterion

[1]. This criterion offers cost-efficient stochastic (LMS) and fast 

converging recursive algorithms (RLS) that iteratively estimate 

the unknown system parameters. However, MSE has a genuine 

limitation that can seriously limit its applicability. The estimates

obtained with MSE are biased when the signals of interest (input

and output) are corrupted with additive noise with arbitrary

coloring. The recently proposed Error Whitening Criterion

(EWC) extends the MSE cost function and has been shown to

produce unbiased parameter estimates when the additive noise is

white [2], [3]. If the whiteness assumption is relaxed, EWC fails 

to give an improvement over MSE. There are other methods that 

attempt to solve this problem. Regalia gave a conceptual

treatment for the IIR filter estimation based on equation-error

techniques with the monic constraint replaced by a unit-norm

constraint [4]. Douglas et al. extended the work to colored noise 

case in [5]. However, these methods require estimation of the 

noise covariances from the data, which is not desirable. The 

Instrumental Variable (IV) technique is traditionally limited to 

white noise, and the generalizations to the colored noise require 

additional prewhitening filters [6]. In this paper, we propose a 

method to estimate the unknown system parameters without 

computing the input noise covariance matrices under the 

assumption that the noise on the desired signal is white. Firstly,

we will present the cost function and then derive the analytical

solution that provides an unbiased estimate of the underlying

system parameters. We restrict ourselves to the case of unknown 

linear FIR systems in this paper. Generalizations to the IIR filter

estimation and the associated stability issues will be dealt in a 

later paper.

2. CRITERION 

A traditional setting of the system identification problem is 

shown in fig 1. Suppose noisy training data pair  is 

provided, where  and 

with  as the noise-free input vector at discrete time index k,

, the additive noise vector with arbitrary covariance

 on the input, being the noise-free desired 

signal and u being the additive white noise added to the 

desired signal. We further assume that the noises  and  are 

independent from the data pair and also independent from each

other. Let the weight vector (filter) that generated the noise-free 

data pair  be , of dimension N. We will assume that

the length of , the estimated weight vector is N (sufficient 

order case). Then, the error sample  is simply given 

by . Consider the cost function in (1).
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uuEIf we assume that the noise uk is white, then kk , and 

(2) reduces to functions of only the clean input and the weights.

The input noise never multiplies itself; hence it gets eliminated.

Further, the cost function in (1) simplifies to
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Figure 1. System Identification block diagram

where, the matrix is,R
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The matrix is symmetric, but indefinite and hence can have 

mixed eigenvalues. Also, observe that the cost function in (3) is

linear in the weights w. If, for instance, we had a single term in

the summation, and we force , then it is easy to see 

that one of the solutions for w will be the true parameter vector

. However, when the number of terms in the summation

becomes equal to the length of our estimated filter, there is 

always a unique solution for w, which will be the true vector 

.
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Lemma 1. For suitable choices of lags, there is a single unique

solution  for the equation  and .*w 0)( *wJ Tww*

Proof. For , must be zero for all 

selected . For simplicity assume . Therefore, we

have N linear equations in w given by, [ .

This system of equations can be compactly written as 
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If the rows of the composite matrix on the left of w in (5) are 

linearly independent (full-rank matrix), then there is a unique

inverse and hence  has a unique solution. We will

prove that this unique solution has to be  by contradiction. 

Let the true solution be . Then, 

0)(wJ

w*

Tw

wT 0)( *wJ  implies

 for all  which is possible only when 0Rw
T
T 0  and 

this completes the proof.

Note that each term inside the summation of equation (1) can be 

perceived as a constraint on the cross correlation between the

desired response and the error signal. By forcing these sums of 

cross correlations at N different lags to simultaneously approach 

zero, we can obtain an unbiased estimate of the true filter.

The optimal solution for the proposed criterion in terms of the

noisy input and the desired responses is, 
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Each row of the composite matrix can be estimated using simple

correlators having linear complexity. Also, a recursive 

relationship for the evolution of this matrix over iterations can 

be easily derived. However, this recursion does not involve 

simple reduced rank updates and hence it is not possible to use

the convenient matrix inversion lemma efficiently [7] to reduce

the complexity of matrix inversion. This motivates the 

development of a low cost stochastic algorithm to compute and 

track the optimal solution given by (6).

3. STOCHASTIC ALGORITHM 

Taking the expectation operator out of the cost function in (1), 

we obtain an instantaneous cost given by,
N

kkkkk dede

1

ˆˆˆˆ)(w (7)

The direction of the stochastic gradient of (7) will then depend 

on the instantaneous cost and the resulting weight update 

equation is given by,
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where, 0  is a small step-size. Owing to the presence of

multiple terms (constraints) in the gradient, the complexity of

the update is which is higher than that of regular LMS 

type stochastic updates. We will now briefly discuss the 

convergence of this algorithm to the optimal solution both in the

noisy as well as noise-free scenarios.

)( 2NO

Lemma 2. In the noise-free case, (8) converges to the stationary

point Tww*  provided that the step size satisfies the following

inequality at every update.
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Proof. It is obvious from the previous discussions that the cost

function in (8) has a single stationary point Tww* . The 

weight update becomes zero only when the cost goes to zero

thereby zeroing the gradient. Consider the weight error vector

defined as kk ww* . From (8), we get, 
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Taking the norm of this error vector and allowing the error

vector norm to decay asymptotically by forcing 
2

k
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we obtain the bound in (9). The error vector will eventually

converge to zero by design, and since the gradient becomes null 

at the true solution: 0lim
2

k
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Lemma 3. In the noisy data case, the stochastic algorithm in (8) 

converges to the stationary point w  in the mean provided

that the step size is bound by the inequality

Tw*

2

1

)(

]ˆˆˆˆ[2

k

N

kkkk

JE

dedeE

w
(10)

Proof. Again, the facts about the uniqueness of the stationary

point and it being equal to the true filter hold even for the noisy
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data case. The convergence to this stationary point in a stable

manner will be proved in this lemma. Following the same steps 

as in the proof of the previous lemma, the dynamics of the error

vector norm can be determined by the difference equation, 
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where, . Applying the expectation 

operator on both sides of (11) and letting

kkkkk dedez ˆˆˆˆˆ
,

22

1 kk EE as

in the previous case results in the following inequality.
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Simplifying further, we get, 
N
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Using Jensen’s inequality, (13) can be reduced further to result 

in a loose upper bound on the step-size. 
N

kkkkk dedeEJE
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2
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Notice that the RHS of (14) now resembles the cost function in 

(1). Rearranging the terms, we get the upper bound in (10).

The important point is that the bound is practical as it can be 

numerically computed without any knowledge of the actual filter 

or the noise statistics.

4. SIMULATIONS 

System Identification: We will show the results obtained using 

the new criterion in the problem of system identification with

colored input noise. The experimental setup is similar to the 

block diagram shown in fig 1. We generated 50000 samples of 

correlated clean input signal and passed it through an unknown

random FIR filter to create a clean desired signal. Gaussian 

random noise was passed through a random coloring filter (FIR

filter with 400 taps) and then added to the clean input signal. 

Three different input SNR values of 5, 0 and -10dB and three

different true filter lengths of 5, 10 and 15 taps were used in the 

experiment. For each combination of SNR value and number of 

taps, 100 Monte Carlo runs were performed. During each trial, a 

different random coloring filter as well as input/desired data was 

generated. We computed the Wiener solution for MSE as well as

the optimal solution given by (6). The performance measure for 

the comparison was chosen as the error vector norm given by,

*10log20 wwTnormerror (15)

where,  is the optimal solution estimated using samples and

is the true weight vector. Fig. 2 shows the histograms of the 

error vector norms for the proposed method as well as MSE. The 

inset plots in fig. 2 show the summary of the histograms for each 

method. Clearly, the performance of the new criterion is superior

in every experiment given the fact that the criterion neither 

requires any knowledge of the noise statistics nor does it try to 

estimate the same from data.

*w

Tw

Stochastic Algorithm: We will now analyze the performance of

the stochastic gradient algorithm given by (8) in the same

framework of system identification. A random four tap FIR filter 

was chosen as the true system. The input SNR (colored noise) 

was fixed at 5dB and the output SNR (white noise) was chosen 

to be 10dB. The step-sizes for the proposed method and the 

classical LMS algorithm were fixed at 1e-5 and 8e-4 

respectively. 100 Monte Carlo runs were performed and the

averaged weight tracks over iterations are plotted for both

algorithms in fig 3. Note that our method gives a better estimate 

of the true parameters (shown by the square markers) than the

LMS algorithm. The weight tracks of the proposed gradient

method are noisier compared to those of LMS. One of the 

difficulties with the stochastic gradient method is the right

selection of step-size. We have observed that in cases when the

noise levels are very high, we require a very small step-size and

hence the convergence time can be high. Additional gradient 

normalizations can be done to speed up the convergence. Also,

the shape of the performance surface is dependent on the

correlations of the input and the desired signals at different lags. 

If the performance surface is relatively flat around the optimal

solution, we have observed that including a trivial momentum

term in the update equation increases the speed of convergence.

In order to verify the local stability of the stochastic 

algorithm, we performed another experiment. This time, the four 

taps of the true system were [0.5, -0.5, 1, -1]. The initial weights

for both LMS and the gradient algorithm in (8) were set to the

true parameters. Both input and output SNR levels were kept at

10dB and the step-sizes were the same as in the previous

experiment. Figure 4 shows the weight tracks for LMS and the 

proposed gradient algorithm. Notice that LMS diverges from this 

point immediately and converges to a biased solution. In 

comparison, the proposed algorithm shows very little

displacement from the optimal solution (stable stationary point).

    In the above experiments with system identification, we 

assumed that the filter order is at least equal to the true system.

However, in many cases, this a priori knowledge is unavailable. 

In such cases, the problem becomes even harder with the 

presence of noise. In order to understand the behavior of the 

proposed method in the under-modeling case, we performed a 

simple experiment. We chose a 4-tap FIR system and tried to 

model it with a 2-tap adaptive filter. Figure 5 shows the weight

tracks for both LMS and the stochastic algorithm. Surprisingly,

the gradient algorithm converged to a solution that matched 

closely with the first two coefficients of the actual system. This

encourages us to state (speculatively) that the criterion will try to 

find a solution that matches the actual system in some sense. 

However, there is still not enough evidence to claim that the

proposed method can provide exact “coefficient matching.” To 

the best of our knowledge, none of the techniques have the exact 

matching property given noisy data.

5. CONCLUSIONS

In this paper, we proposed a new criterion to solve the problem 

of system identification in the presence of colored input noise.

Existing techniques either result in a biased solution or require 

explicit estimation of the noise covariance matrices to obtain an 

unbiased estimate of the unknown system. The new criterion 

exploits the correlations between the error and the desired

signals at different lags and does not require the estimation of 

II - 691

➡ ➡



the noise covariances. We further proved that the optimal 

solution with this cost function is always unique and approaches 

the underlying system under the sufficient order assumption. We 

then derived a simple stochastic gradient algorithm to estimate

the optimal solution in an online manner. Brief discussions on 

the convergence were presented. Simulation studies showed the

effectiveness of this criterion as well as the stochastic gradient 

algorithm. In this paper, we limited our focus to the sufficient 

order scenario only. In cases, when the model order is unknown

the problem becomes more difficult and has been seldom 

addressed in literature. Currently, we are working on the

theoretical aspects pertaining to the under-modeling case and the 

conditions under which the estimates obtained by the proposed 

method match with the actual system. Future work will also be 

focused around extending this method for handling colored noise

in the desired signal. 
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