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ABSTRACT

It is implicit in traditional discussions of linear or nonlin-
ear state estimation filters that there is no relation specified
between the dimension of the state and the observation vec-
tor dimension. If anything though, the state would often be
thought to have higher dimension. But increasingly in prac-
tice problems are arising where the reverse is the case. In
this paper we show that state estimation filters, such as the
Kalman filter undergo a remarkable simplification in struc-
ture and computation when the observation dimension is
much larger than the state dimension. Both linear and non-
linear cases (including point processes) are discussed.

1. INTRODUCTION

In traditional discussions of state space estimation e.g. [1],
[2] no relation is specified between the state and observa-
tion dimensions. Although it would often be implicit that
the state dimension is larger. However with the tremendous
recent growth in sensor diversity and capacity, communi-
cation channel throughputs and computational processing
speeds, significant applications are arising where the reverse
is the case. In econometrics hundreds of time series may be
collected relating to a macroeconomic phenomenon of low
dimension [3]; in neuroscience (which itself is undergoing
tremendous growth in generation of high dimensional data)
multielectrode recordings of spiking neurons from tens and
even hundreds of cells are recorded all relating to a single
phenomenon of low state dimension [4]; and in computer vi-
sion image sequence data similarly generates large dimen-
sional observations of low dimensional phenomenon (e.g.
rigid body rotation)[5],[6].

In all these areas, state estimation of one kind or another
is of interest but it seems to have escaped notice that the
structure of optimal filters in such cases undergoes consid-
erable simplification. In this work we show that the Kalman
filter undergoes remarkable structural and computational sim-
plification (section 2). In section 3 we extend this to non-
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linear analog systems and in section 4 to analog systems
with point process observations. Conclusions are offered in
section 5.

Notation. In the sequel if A, B are positive definite ma-
trices, by A < B we mean B — A is positive semidefinite.
Also Apaz(A), Amin(A) denotes respectively the largest,
smallest eigenvalues of postive definite A. Also Y7 ; de-
notes (y7,--+,y{)T. And n =dim(z),p=dim(y).

2. THE HIGH-DIMENSIONAL KALMAN FILTER

We consider a standard linear time invariant stochastic state
space model in discrete time, with,

State Equation: z311 = Fzy + wy,

Observation Equation: y, = Haxy + v
where (wy, v) is a Gaussian white noise sequence with co-
variance (g }02). We assume:

Al. R is positive definite.

For our development we need formulations for both the
predicted state 751, the filtered state 4, and their asso-
ciated error covariances Py, _1, Py|p, respectively. We re-
call then the following well known Kalman filter update ex-

pressions.
State Update
G = 2 + Py H'R! 2.1
Ty, Tpjk—1 (A en €k (2.1)
Tpye = Flpp = Fopp-1 + Kreg

Kalman Gain: K = FPk‘k_lHTRe_kl
Prediction Error: e, = y;, — Hfi'k\k—l
Variance: Ry, = var(ex) = R+ HPy_ H”
State Error Variance Update
Por = FPyFT +Q (2.2)
Py = Pyp1 — Py 1 H R, HPyj 4

and associated Information forms

-1 -1 T p—1
Pgy = P, +H'R'H (2.3)
K, = FPyH'R™!
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Less familiar perhaps is the filtering error
vk = Y — Hipp,var(vgy) = RRe_klR

It is elementary to show from (2.1) that: R 'y, = Rfklek
which explains the variance formula.

High Dimensional Observations

We now suppose n = dim(z) < p = dim(y) and that:
A2. Rank(H)=n.

Our discussion begins with the crucial observation that
under A1,A2: W = HTR—1H has rank =n.

We now suppose:

A3. \pin(W) = oo as p — oo.

This encapsulates our assumption of high dimensional
observations in an operational way. If R = o 21 this means
Amin(HT H) — 0o. We might e.g. find in a typical appli-
cation that H™ H /p — some finite full rank M. In any case
we note an important special case:

A3s. Mpin(HTH) — 00 as p — 00; suppAmaz (R) < 00.

The second part of this condition ensures that adding
highly correlated data to "beef up’ p does not help.

Continuing we note that W ! exists and so from the
information filter formula (2.3)

P,;lg >W = Py, < W™ (2.4)

This means Py, is a bounded (matrix) sequence and so
must have at least one limit point (matrix) say Py, which
may not be unique (there may of course be a continuum
of limit points). But then every such limit point obeys,
P; < W~ and so every limit point converges on 0;
Py — 0asp — oo.

Putting (2.4) into (2.2) gives Py, < FW-IFT 4 Q.
So Py 1)) is a bounded (matrix) sequence and must have a
(possibly non-unique) limit point (matrix) P,. Also for any
such limit point (matrix): Py > @ = Pp > Q

=20<P,-Q<FW'F' -0

as W — oo i.e. every limit point (matrix) converges on :
P, — Q. This is a startling result for the following reason.

If we return to the state space model we see that () is the
innovation variance for the state. If we observed the state
directly the best prediction error we could achieve would
have variance (). Our result shows we are achieving this in-
stead with high dimensional noisy data. We can summarise
the discussion so far in:

Result 1A. Under A1,A2,A3 we have:
Prediction Asymptotics: Any limit point (matrix) of Py 1z
say P, obeys: P, = QasW — oo.
Filtering Asymptotics: Any limit point (matrix) of Py, say
Py obeys: Py —0asW — oo.

But this is only half the story.

Static State Estimators
We now show how the Kalman filter can be approximated

by a static estimator. We introduce the filtered regression
estimator w,*cl & and its associated forecast xz‘ k1

* _ —1 7T p-1
Tee = W H Ry
* A
Lhlk—1 = Fip 1k

and compare their performance to that of the Kalman filter.
The filtered state estimation error is

zp—why = —W 'HTR ' (yr — Hay)
= —W'HTR v,

which has ValrianceP,;“| £ = W1 and this is (as expected)

larger than Py, < W1, However let us consider the rela-
tive increase in variance in replacing Z x|z, by ar:,*€| o
-1 -1 -1
Pk|k(Pk*|k _Pklk) = (Pk\k—l +W)W— -1
= (WPyy_1)™'

and this has a (possibly non-unique) limit point (W P;)~!
and under A3 this — 0 as p —+ oo, since Py — (). Thus the
relative increase is small.
Note that 372\197 Ty, differ by a white noise
Thp — &k = WTTHTR™ (yp — Higyp)
= WI'HTR 'y,
= WﬁlHTRe_kle,c
with consequent variance
var(ehy, — dge) =W TH RZJHW ™! (2.5)
We now look at the prediction error.
* * * T
klk—1 = Bz, — wk\kfl)(mk - "Ek|k71)
= E(Fzp +wp — Fap_q,_q)
X (Fop_y +wy — le*c—l\k—l)T
= FP1:71|1¢71FT +@Q
= FW'F'+Q
= Pj, say
We immediately deduce, under A3: P; — Q, asp — ©

Again we look at the relative difference in prediction
variances. By orthogonality of the optimal estimator

vk = Pere + Blugul)sur = o5y — Brrag
= Popa + FE@y), — Sae) (@h — Eap) T FT
= P+ FW'HTR'HW'FT, by (2.5)
Thus the norm of the relative difference is

-1 = 1Pl (P — Prerags) |l
Il Pk+1|kFW71HTR;k1HW71FT I
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However: R., > R= R~ ! > Re_k1 = HTRe_le <Ww
= - Q™' FW=FT |

which, under A3, — 0 as p = 0o. To sum up:
Result 1B. Under A1,A2,A3: The static regression state
estimator is asymptotically as good as the Kalman filter

Pip =P =FWT'FT4+Q = Q, asW = o0
and the relative difference — 0 as p — ooi.e.

sup, || Pﬁ;,l( k-1 — Prje—1) [[= 0

3. NON-LINEAR FILTERS WITH HIGH
DIMENSIONAL ANALOG OBSERVATIONS

A suitable version of the above results can be developed for
the non-linear case.

For simplicity we consider a discrete time nonlinear model,

(The continuous time case will be discussed elsewhere).

v = f(kxp) + ok, zp)ng
= fr(zr) + ok (xr)ng
Y = h(k‘,l’k) + v = hk(.’L’k) + Vg

(nk,v) is a Gaussian white noise (independent of past y,)
with conditional variance ( %’“ ng) = (Q(ko’””’“) R(k(fzk)). We
wish to approximate the filtered and predicted state estma-
tors Tk, Tr|k—1 and their corresponding error covariances
Pk, Prjx—1. We deal with &, Py, and quote results for
the other two whose details will be given elsewhere.

We need then to approximate the conditional density

P(Tk+1]Y1,6+1)- We have

P(Try1, Y1 ky1)
P(Y1 k41)

where p(-,-) denotes a joint density and P(-) a marginal
density. In view of the observation equation we can write

P(@rt1|Y1k41) =

P(@ht1, Y1 k41) = PWrhtr|Zha1) p(Ths1, Y1 1)

and some simple Gaussian algebra gives

= pe(rrr)e” ) play g, Ve k)

1, T -1
eiyk+1Rk+1y’c+1

P(Tkt1, Y1 kt1)
Px (Y1)
Urp1(z) = g Rl higr (2)

- %hkﬂ(m)TRELth(I)

The conditional mean estimator is then

E(zp1|Y1,k41)
[ mppreVen ) play VY ) dagg
[ eVr+1(@nt1) p(zpy1, Y1 1) dTps1

Thy1|kt1

We will approximate these integrals using Laplace asymp-
totics [7] assuming

N1 A, (w)R;il (x)hgy1(x) = 00 as p — oo.

Note that N1 ensures that as p — o0,
var (Y Bty (2)hig (2))
= i1 (@R (2)higa () = 0o
Applying then Laplace asymptotics we introduce
Ty = arg.min.Upy ()

. . : v,
which satisfies: Uy, (2}, ,) = =5

| _.. =o.
T=ay

and we may expand Uy.1(z) is a Taylor series about z_ ;.
This Taylor series is plugged into the integrals above yield-

ing Gaussian integrals which are easily evaluated giving

P - "El’;-i-lN(I;;-ﬁ-l) ok
k+1llk+1 = 7]\[(%“) = T4
N(@) = e @ p(z, 1)Uy, (2)]?
1 d2U

Uk+1(93) drdaT

Thus we get a remarkable extension of the linear result.
Result 2.Under the high-dimensional observation assump-
tion N1 the filtered estimate is well approximated by the
static non-linear regression estimator zy, ;.
In a similar way we find easily: Pyi1j541 ~ UI:—&-I (T%e1)
To compute the non-linear regression estimator a natu-
ral candidate is the Newton Raphson algorithm (with ¢ the
iteration index)

2 = 20 — U (@) T U (27)
In a similar way it can be shown that

ik+1\k ~ fk(xZ\k)>Pk+1\k ~ Qk(wZ\k)

This last result again is remarkable in showing that the pre-
diction error achieves (approximately) the true state innova-
tions variance.

4. NON-LINEAR FILTERS WITH HIGH
DIMENSIONAL POINT PROCESS OBSERVATIONS

We now turn to develop similar results in a counting process
context. We suppose a continuous non-linear state space
model (of which the model above can be treated as a dis-
cretisation) but now a vector of conditional (possibly inho-
mogeneous) Poisson process observations

dN{ = X"(t,z(t))dt + dM],r=1,---,p

and conditional on the whole state trajectory, Ny = (N, r =
1,---,p) is a (vector) inhomogeneous Poisson process with
rate function Ay = (A" (¢, z(t)),r = 1,---,p).
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M; = (M],r = 1,---,p) is then a vector martingale.
We consider discrete time (binned) observations (wherein &
is the sampling interval) with x;, = z(k?d),

yp = N = Xk, 21)0 + m)
= #eventsin kd, (kd + 0)

c.f.[8]. We can think of m}, as a white noise of conditional
variance A" (k, z,)0. Also denote

4,1 4,
Nltcs - (ng )77Nk(: P))
r d,r d,r

Nl,k = (Nl(’llzaaNl(?[g)

We are interested in approximating & |, Py etc. as before.
As before write the conditional density p( k41| N1 k+1)

P(Ths1, Nikt1)
P(N1 j41)

and again using the observation equation

P(@rt+1|Nik41) =

P(@rt1, N1 eg1) = p(NP |wpt1) p(wpt1, N1 k)

Simple inhomogeneous Poisson calculations c.f. [8], give
P(@hr1; Nips1) = Po(NDyy )ePs 1) plag iy, Ny )

a,r
P(NJ,y) = TEP.(NSD)

k+1
PN = N e NE
Upir(2) = SENS10gAT), (2) — (M (2) — 1)]

The conditional mean estimator is then

Tpriprr = E@rp1|Niggr)

[ wppreVer1 @) p(ap g Ny g)dogs
J eVen@e) p(zpiq, Nig)dagia

As before, estimate this with Laplace asymptotics assuming
Cl. 27X\, (x) = 00, as,p — 0.
Note then that, as p — oo

a,r r r
var (SN = Np .y (2)8) = SEAL, (2)6 — o0

Sointroduce: 7z}, = arg.minUyy(z)

which obeys: U,;H |z_1* = 0, where
k41
) din)\t,  (x)
g, r
Up1 = Ef(N,§+§) - k+1($)5) 72;1

Again expanding Uy () in a Taylor series,inserting in the

integrals above and evaluating yields & j41|x41 & Tf ;-

We similarly find: Py 341 = U,;’_H (Tfi1)-

And again we then recover the remarkable result.

Result 3. Under the high-dimensional observation assump-

tion C1, the optimal mean square non-linear filter is well

approximated by a static non-linear regression estimator.
The nonlinear results for the predictor given above sim-

ilarly follow here.

5. CONCLUSIONS

In this paper we have discussed state estimation from high-
dimensional data i.e. when state dimension << observa-
tion dimension. Under some reasonable regularity condi-
tions (that exclude addition of degenerate observations) we
have shown that optimal dynamic filters and predictors ex-
hibit a remarkable simplification. In particular the high-
dimensional data provides such strong state information that
optimal static regression estimators are just as good. And
knowledge of the state dynamics provides little value for
efficient state estimation. Of course predictions based on
the static estimator still need knowledge of system matrices.
Also dynamics will remain inportant for system identifica-
tion. We have developed versions of this result in both linear
and non-linear cases and with both analog and digital obser-
vations. These results promise considerable computational
gains for many contemporary state estimation applications.
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