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ABSTRACT

This paper is concerned with blind separation of convolu-
tive mixtures of mutually independent signals. We consider
the MISO extraction of one source signal based on the max-
imization of a contrast function (CF): a new, so-called “ref-
erence” CF is proposed, which is based on cross-statistics
between the estimated output and a reference signal. The
proposed CF is valid both for i.i.d. and non i.i.d. sources.
It presents the advantage over other CFs to be a quadratic
function, which makes its optimization much easier to real-
ize. Finally, simulations demonstrate the validity of this CF
and show that it leads to improved separation performances.

1. INTRODUCTION

We consider the problem of blind equalization of Linear
Time Invariant (LTI) systems (see e.g. [1, 2, 3]). Such a
problem is of interest and it appears in its generic form in
a wide variety of applications, e.g. array processing, pas-
sive sonar, seismic exploration, speech processing, multi-
user wireless communications, ... In this latter area in par-
ticular, received signals have to be equalized, both in space
and time in order to eliminate inter-symbol and co-channel
interferences.

Basically, different problems can be considered depend-
ing on the characteristics of the input(s) signal(s) and on
the number of inputs and outputs of the considered linear
system. The classical problem considers a single i.i.d. in-
put and a single output. Recently, more challenging prob-
lems have been considered where the number of inputs is
greater than one and where the signals are not necessarily
assumed i.i.d. [4]. In this paper, we consider a Multi-Input /
Single-Output (MISO) system with possibly non i.i.d. input
sources, even though we mainly focus our attention on the
i.i.d. case.

Our approach relies on inverse filter criteria based on
higher-order statistics, see e.g. [2, 5, 6]. We propose a new
objective function which makes use of a so-called reference
signal and we show that it is a contrast function (CF). Hence
the problem can be solved by a (global) maximization of

this function. The proposed objective function has the great
advantage of depending quadratically on the searched pa-
rameters. This leads to a simplified optimization scheme,
which thus significantly speeds up the source estimation.
Moreover, computer simulations tend to show that the qual-
ity of the source estimation is improved in comparison with
results provided by former CFs without reference.

2. BACKGROUND

2.1. Model

We consider the invertible and stable Linear and Time In-
variant (LTI) multichannel system described by the input-
output relation

x(n) =
∑
k∈Z

M(n − k)s(k) (1)

where s(n) is the (N, 1) vector of source signals, x(n) is

the (Q, 1) vector of observations with Q ≥ N and {M} def=
{M(n), n ∈ Z} is a sequence of (Q,N) complex matrices
which corresponds to the impulse response of the so-called
LTI mixing system.

Furthermore, the following assumptions are made:
A1. The source signals si(n), i ∈ {1, . . . , N}, are mutu-
ally statistically independent.
A2. Each source is a zero-mean, unit power and stationary
complex random signal with a non-zero fourth order cumu-
lant, i.e. for all i ∈ {1, . . . , N}

C4{si} def= Cum{si(n), s∗i (n), si(n), s∗i (n)} �= 0 .

In addition, the covariance function of each source is a pos-
itive definite sequence which is denoted by γi(k), k ∈ Z.

2.2. Problem

The considered problem consists in estimating a (1, Q) vec-

tor of LTI filters (equalizer) {w} def= {w(n), n ∈ Z} using
only the outputs x(n) of the unknown LTI system {M} in
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such a way that the signal

y(n) =
∑
k∈Z

w(n − k)x(k) (2)

restores one of the source signals si(n), i ∈ {1, . . . , N}.
By defining the (1, N) vector of the global LTI filter

{g} def= {g(n), n ∈ Z} as follows

g(n) =
∑
k∈Z

w(k)M(n − k) , (3)

we have

y(n) =
∑
k∈Z

g(n − k)s(k) = {g}s(n) . (4)

Hence we say in general, that the equalization is realized
when there exist an index io ∈ {1, . . . , N} and a non-zero
scalar unit-norm filter with impulse response g(n) such that
the filter components in g(n) read

gi(n) def= (g(n))i = αg(n)δi−io
, (5)

where α ∈ C and δi−io
stands for the Kronecker symbol,

i.e. δi−io
= 1 if i = io and 0 otherwise. The above relation

is called the “equalization condition”.
Notice that the above equalization criterion can be made

more restrictive when the source signals are also assumed
to be sequences of independent and identically distributed
(i.i.d.) complex random variables. Indeed in such a case,
it is classically said that the equalization is realized when
the unit-norm scalar filter g(n) reduces to a delay and hence
reads g(n) = δn−l, where l ∈ Z.

2.3. Normalization

As the source signals are assumed non observable and the
mixing system is unknown, we can always assume (without
loss of generality) that the source signals are unit power, i.e.
E{|si[n]|2} = 1, for all i. Since one can always work with
a normalized output of the equalizer, this implies that the
global filter is unit-norm in the sense that:

‖g(n)‖2 def=
N∑

i=1

∑
(k1,k2)∈Z2

gi(k1)g∗i (k2)γi(k2 − k1) = 1 .

In the following we denote G1 the set of unit norm vector
filters and Gio

1e the subset of filters in G1 satisfying the equal-
ization condition (5). In such a case the complex number α
in (5) has unit modulus. Finally we denote Gio

1ed the subset
of Gio

1e when g(n) = δn−l. The set Gio
1e (resp. Gio

1ed) corre-
sponds to the set of admissible equalization solution for any
source signals (resp. for i.i.d. source signals).

3. EQUALIZATION CRITERION

3.1. Contrast functions

One of the most appealing approach to the blind equaliza-
tion problem consists in the use of an appropriate CF. Ba-
sically, a CF plays the role of an objective function in the
sense that its (global) maximization allows us to solve the
problem. Hence the equalization issue becomes an opti-
mization one. Besides, identifiability conditions are pro-
vided by the definition domain of the considered CF.

To address our MISO equalization problem, we intro-
duce the following definition of a CF for i.i.d. source sig-
nals:

Definition 1 Let C(.) be a real function of the signal y(n)
(and thus of the (1, N) vector filter g) as defined in (4). C(.)
is called a CF when there exists io ∈ {1, . . . , N} such that:

p1. ∃l ∈ Z such that for all possible output y(n) of the
equalizer:

C(y(n)) ≤ C(sio(n − l)) (6)

p2. If equality holds in (6), then g ∈ Gio

1ed.

The above definition cannot be used for non i.i.d. source
signals since the independence property for such signals
leads to the extraction of one source only up to a scalar fil-
ter. This is the reason why a generalization of the above
definition for non i.i.d. source signals is needed and will be
given in Section 4.

3.2. Reference signal

The main contribution of this paper is to consider another

equalization vector filter, say {wr} def= {wr(n), n ∈ Z}, in
such a way that its output

z(n) =
∑
k∈Z

wr(n − k)x(k) (7)

serves to construct cross-statistics with the true equalizer
output y(n) in order to facilitate the equalization. It is the
reason why it is called a reference signal subsequently.

We also need to define the new global reference vector
filter {t(n), n ∈ Z} as:

t(n) =
∑
k∈Z

wr(k)M(n − k) . (8)

3.3. A generalized criterion

The main purpose of this section is to propose a new CF. To
this end, we need to introduce a technical assumption about
the reference system:

T. ∃l ∈ Z such that ∀(j, k) ∈ {1, . . . , N} × Z, we have
|tj(k)| < |t1(l)| when k �= l or j �= 1.
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Define the following function:

Cz(y(n)) def= |κ4(y(n), z(n))| (9)

where κ4(y(n), z(n)) def= Cum{y(n), y∗(n), z(n), z∗(n)}
and z(n) = {t}s(n) is the reference signal. Notice that the
function κ4(y(n), y(n)), where the reference signal z(n) is
replaced by y(n), was already shown to be a CF in [3] for
the case of i.i.d. sources and in [7] for non i.i.d. sources.

Proposition 1 If the reference system satisfies assumption
T, the function Cz(y(n)) defined in (9) is a CF for i.i.d.
sources.

Proof: Using multi-linearity of the cumulants and indepen-
dence of the sources, we have:

κ4(y(n), z(n)) =
N∑

j=1

∑
k∈Z

|gj(k)|2|tj(k)|2C4{sj} . (10)

It follows:

Cz(y(n)) ≤
N∑

j=1

∑
k∈Z

|gj(k)|2|tj(k)|2|C4{sj}| . (11)

Assuming that maxN
j=1 |C4{sj}| = |C4{s1}| (which can be

done without loss of generality since the order of the sources
is unknown and purely conventional), we obtain:

Cz(y(n)) ≤ |C4{s1}|
N∑

j=1

∑
k∈Z

|gj(k)|2|tj(k)|2 . (12)

According to assumption T, this yields:

Cz(y(n)) ≤ |C4{s1}||t1(l)|2
N∑

j=1

∑
k∈Z

|gj(k)|2 . (13)

Now, as the global vector filter has a unit norm and the
sources are i.i.d., we have

∑N
j=1

∑
k∈Z

|gj(k)|2 = 1. In
addition, since

t1(l)2C4{s1} = κ4(s1(n − l), z(n)) , (14)

we finally find

Cz(y(n)) ≤ Cz(s1(n − l)) . (15)

This corresponds to property p1 of the definition of a CF.
Considering now the second property, if we have equal-

ity hereabove, then we have equalities in (11), (12) and (13).
Focusing on the right hand side expressions of (12) and (13),
we obtain:

N∑
j=1

∑
k∈Z

|gj(k)|2|tj(k)|2 = |t1(l)|2
N∑

j=1

∑
k∈Z

|gj(k)|2 (16)

and thus:

N∑
j=1

∑
k∈Z

|gj(k)|2
(
|t1(l)|2 − |tj(k)|2

)
= 0 . (17)

According to assumption T, we have |t1(l)|2−|tj(k)|2 ≥ 0,
and we deduce that, for all k ∈ Z and j ∈ {1, . . . , N},

|gj(k)|2
(
|t1(l)|2 − |tj(k)|2

)
= 0 .

Then, for all j ∈ {1, . . . , N} and for all k ∈ Z, we have:
|gj(k)|2 = 0 or |t1(l)|2 = |tj(k)|2. Consequently, |g1(l)| =
1 and for all other coefficient (j, k) �= (1, l), gj(k) = 0.
Finally, the equality holds in (15) only if g ∈ Gio

1ed. �

4. GENERALIZATION TO THE CASE OF NON
I.I.D. SOURCES

Let us now briefly consider the non i.i.d. case. Since blind
MISO separation of non i.i.d. sources leaves a scalar fil-
tering ambiguity, the basic idea consists in allowing the es-
timation of a non i.i.d. source signal up to any non-zero
unit-norm scalar filter.

Definition 2 The real function C(.) is called a CF when
there exists io ∈ {1, . . . , N} such that:

p1’. For all possible output of the equalizer:

C(y(n)) ≤ sup
g∈Gio

1e

C({g}s(n)) (18)

p2’. If equality holds in (18), then g ∈ Gio
1e.

In addition, the technical assumption T has to be strength-
ened. Let us define the following upper-bound, which is
assumed to be reached:

∀i ∈ {1, . . . , N} Mi
def= sup

g∈Gi
1e

Cz({g}s(n)) (19)

Assumption T should then be replaced with:
T’. ∀j �= 1 Mj < M1

The above assumption is not restrictive. In particular,
we have been able to derive a sufficient condition for T’.
Roughly speaking, this condition can be interpreted as fol-
lows: there exists in the reference system {t} a term t1(p�)
which dominates all the other terms (ti(k))k∈Z,1≤i≤N .

5. SIMULATIONS

5.1. Implementation of the algorithm

One of the main advantage of the proposed CF over former
CFs such as the fourth-order auto-cumulant lies in the fact
that its optimization can be carried out easily. Indeed, in
[3] it is proposed to use an iterative, batch, steepest ascent
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method in order to maximize the CF. In general, this method
converges slowly.

On the contrary, since the reference signal z(n) is fixed,
one can see that the CF (9) constitutes a quadratic func-
tion of the separating filter coefficients. Therefore, the non-
linear optimization problem reduces to the optimization of
a quadratic function under a quadratic unit-norm constraint.
This can be done making use of the singular value decom-
position of a matrix containing cross-cumulants between the
observations and the reference signals. An exact solution
to the optimization problem can hence be obtained within
a finite number of operations and an iterative method is not
needed any more. This significantly simplifies the optimiza-
tion task.

5.2. Simulation results

The CF (9) has been tested in various situations. The mixing
system has been chosen to be a MIMO FIR filter with more
sensors than sources, so as to be sure that it admits a FIR
inverse filter. There were either 2 sources and 3 sensors
(Fig. 1) or 3 sources and 4 sensors (Fig. 1, 2). The length
of the mixing filter was set to 3. The sources were i.i.d.
sources, either centered and uniformly distributed or PAM4.

We have first tested the CF with an ideal reference sys-
tem (i.e. the reference signal was one of the sources) and we
have observed for sample sizes ranging from 1000 to 10000
points that the optimization of our CF leads to a good esti-
mation of the sources with a quite small mean square error
(Fig. 1).

In a practical situation however, one would obviously
not know the sources and a first reference signal has to be
estimated. We propose to this end to use the MISO source
extraction method proposed in [3, 7], which consists in the
gradient maximization of |κ4(y(n), y(n))|. We then used
the resulting signal as a reference and optimized our crite-
rion. As demonstrated by Fig. 2, the use of our CF improves
the quality of the separation.

Another possibility consists in stopping the gradient al-
gorithm before it has converged and use the approximate
reference to build our CF. We have observed that this solu-
tion improves significantly the speed of the source separa-
tion and that the quality of the results is not altered in com-
parison with those in Fig. 2. Finally, note that reference CFs
can be useful in semi-blind approaches.
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Fig. 1. Average MSE on reconstructed sources versus number of
samples for PAM 4 and uniformly distributed i.i.d. sources.
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Fig. 2. Average MSE on reconstructed sources (PAM 4 sources,
5000 samples). Comparison on 500 Monte-Carlo realizations of
the referenced CF and the CF |κ4(y(n), y(n))|. The data have
been ordered according to the increasing MSE values for this latter
CF.
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