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ABSTRACT 

In this work, we present five new versions of the Fast 
Newton Transversal Filter algorithm (FNTF). The first 
algorithm is based on a simple modification of the 
filtering part, by introducing a scalar accelerator 
parameter. The second algorithm is based on the use of 
a block filtering technique to actualize the local filter 
coefficients. The third algorithm is a modification of the 
second algorithm by the use of the final filtering errors 
to actualize the filters coefficients. The fourth and the 
fifth algorithms are based respectively on the 
combination of features from the first algorithm with 
features of the second and third algorithms. These five 
new algorithms were proposed to improve the 
convergence speed of the original version of the FNTF 
algorithm for the identification of acoustic impulse 
responses, and to also improve their tracking ability 
when these systems vary in time. The different 
algorithms and their comparative results are presented.  

1. INTRODUCTION   

The increasing power of Digital Signal Processors 
(DSPs) and VLSI technology allows the use of very 
long adaptive filters in applications such as automatic 
control, system identification, channel equalization, 
interference rejection, echo cancellation, etc. The task is 
to estimate the filter response in such a way that for a 
given input signal, its output tracks a desired response 
signal in an optimal way. Several types of adaptive 
filtering algorithms have been proposed in order to get a 
much faster convergence than the Normalized Least-
Mean-Squares (NLMS) adaptive filter, when used for 
system identification with correlated inputs like speech 
[1]. One of these algorithms is the FNTF algorithm, 
which produces a performance similar to Fast Recursive 
Least-Squares (FRLS) transversal adaptive filters. 
Indeed, the convergence rate of the NLMS depends on 
the input signal statistics, and this signal is implicitly 
modeled as a white noise sequence. In standard FRLS 
algorithms, an autoregressive modeling of the input 
signal is performed in the prediction part, and 
consequently, the input statistics no longer affect the 
convergence. This AR modeling of order L (L being the 
order of the filter to be estimated) amounts to 6L 
multiplies per sample. Recalling that in some 

applications, like acoustic echo cancellation, real time 
identification of long impulse responses is required, the 
corresponding FRLS computational load is prohibitive 
[2]. Assuming an autoregressive input of order N, with 
N much smaller than L (which is generally true for 
speech), a large complexity reduction can be achieved 
by using the FNTF algorithm [2]. In this paper, we 
propose five new versions of the FNTF algorithm. A 
comparative study is performed for the convergence 
and tracking performance of the five proposed versions.  

2. DERIVATION OF THE ORIGINAL VERSION 
OF THE FNTF ADAPTIVE ALGORITHM 

Let us first recall the filtering part equation of the FNTF  
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where T denotes matrix transpose. The impulse response 
is modeled by the vector t,LH  of size L, tŷ is the 

estimated output signal, and t,Lε  is the a priori error 
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where t,LR  is the LxL short-term covariance matrix of 

the input signal. In the exponentially weighted least-
squares (LS) case, the covariance matrix is updated by 
the following recursive equation:  
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The FNTF algorithm [1] is built around an efficient 
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where t,La  and t,Lb  are forward and backward 

predictors of order L, and t,Lα  and t,Lβ  are the power 

of the forward and backward predictor errors. To 
illustrate the FNTF derivation, let us take a simple 
example, that is N=L-1. Assuming that the input signal 
is autoregressive of order L-1, we want to find a 
positive definite matrix t,LR 1+  in two partitioned forms 

to exhibit the elements to be extrapolated. We get [2]:  
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with t,
a
t, r00 =Γ , Lt,
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bT
t,L r,..,r,r̂Γ  which are estimated 

according to 1−+= ttt,it,i xxrr λ  for 10 −≤≤ Li . Note 

that a
t,Lr̂ and b

t,Lr̂  are the only unknown elements. Using 

the previous notation, the LS optimum forward 
predictor and the error variance of order L are given 
respectively by: 
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In (11), the minimum forward power depends on the 

unknown element t,Lr̂ . The basic idea underlying the 

FNTF algorithm is to compute this unknown element 

by maximizing t,Lα . That is, we choose a
t,Lr̂  to be the 

worst possible choice with respect to the forward 
predictor estimate. This criterion is similar to the 
Maximum entropy principle for extrapolating the 
autocorrelation sequence of a stationary process [3]. To 
achieve this maximization, the trick is to take into 
account the growing order formulation of (10),(11), that 
we can get from the RLS lattice filter theory: 
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where the reflection coefficient a
t,LK  is defined by: 
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Indeed, since the variance of the backward error 

11 −− t,Lβ is positive, t,Lα  takes its maximum value when  

a
t,LK is set to zero, i.e.:  tL

tb
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a
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Then, choosing this optimum value, the forward 
predictor and the minimum error power of the 
extrapolated process are: 
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Applying the same approach to backward parameters,  

i.e. maximizing t,Lβ  with respect to b
tLr ,ˆ , we find that 
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The results show that b
t,L

a
t,L RR 11 ++ =  can be 

extrapolated from t,LR , and moreover the 

corresponding predictors are given by (16),(17) or 
(18),(19). These predictors of order L are equal to the 
optimal predictor of order L-1 extended with a zero. Let 
us now come back to the general case, that is 
extrapolation from N to L. Following a similar 
reasoning, it is possible to extrapolate t,NR 1+  up to 

t,LR 1+  in a recursive manner. Applying (16),(17) and 

(18),(19) recursively from L to N, we obtain: 
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Using these truncated predictors instead of full order 
predictors in (7),(8) and following the classical 
derivation of the FRLS, we can find update equations 
for the extrapolated dual Kalman gain and the 
likelihood variable. All quantities of order N are 
computed by solving the prediction problem of order N 
[2],[3].  

3. THE NEW VERSIONS OF THE NEWTON 
ALGORITHM   

3.1.  Algorithm 1  

In order to improve the performance of the FNTF 
algorithm of Section 2 in the case of non-stationary 
channels and inputs, we introduce simple modifications 
which don’t impair the nice numerical properties of the 
FNTF. The tracking behaviour is improved by 
controlling the adaptation gain in the filtering part [4]. 
The equation of the transversal filter coefficients update 
(3) becomes as follows : 

tLtL
tL

tLtL CHH ,,
,

,, 1

1 ε
γµ−

−=                                        (24) 

where the term of tLtLtL CC ,,,
~γ= , and tL,γ  is provided 

by the prediction part of the FNTF algorithm. The new 
introduced parameter µ is a control parameter which 
must be chosen close to 1 in order to ensure the 
convergence of the modified algorithm [4]. When µ is 
chosen close to 1, the adaptation gain is increased, 
therefore, the tracking and convergence speeds are 
improved (this is paid in return by a greater sensitivity 
to the output noise). Thus, the choice of the forgetting 
factor λ, which is related to the numerical stabilization 
method [1],[6] (e.g. λ>1-1/(2L+3.5)), is more dependent 
on tracking considerations. Locking of the FNTF 
algorithm can be observed with non-stationary input 
signals like speech. This locking comes from the 
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temporarily poorly exciting characteristics of the input 
signal. It can be prevented by reinitialising properly the 
algorithm when a tendency to locking is detected; the 
detection can be done easily from inspection of the 
likelihood variable (5) which then goes to zero very 
quickly [5]. 

3.2. Algorithm 2  

This algorithm is based on a modification which allows 
to obtain a prediction structure working with a 
forgetting factor λ  lower than that of the basic initial 
structure. A new structure was applied which makes it 
possible to substitute for the global algorithm P 
algorithms of equal or unequal lengths working each 
one on a reduced number of parameters [6].  This 
technique yields to carry out P FNTF algorithms 
working as in the structure represented in Fig. 1, for the 
case with µ=0. The P adaptive algorithms for the 
filtering of ty  are adapted by local filtering errors. The 
equations update of the P transversal filters are: 

tLtitLtL iii
CHH ,,1,, ε−= −   ,  i = 1,2,…,P              (25) 

where        ∑
=

=
P

i
i LL

1

                

We note that the Kalman gain of section i, with 
dimension iL , is calculated by a FNTF with an 

exponential forgetting factor based on iL  [1], and from  
the portion of signal taken at the exit of section (i-1) 
and the entry of the section (i+1), which corresponds to 
the modeling of the input signal tx  delayed by 

pLLL ...21 ++  samples. We have applied this new 

structure to the original FNTF version. The filtering 
error of section i  is calculated as follow.  

tL
T

tLtiti ii
XH ,1,,1, −− −= εε        ( tt y=,0ε )              (26)    

).....( 11, 1 +−−−− −
=

iiii LLtLt
T

tL xxX    ( 00 =L )                (27) 

3.3. Algorithm 3  

This algorithm is a modification of the previous 
modified FNTF algorithm (algorithm 2). Algorithm 3 is 
based on the use of the total (or final) filtering error for 
the update of the P adaptive filters. This allows to 
obtain a new version of the FNTF algorithm with a 
better performance. The basic equations of this 
algorithm are obtained from algorithm 2 and by 
substituting the local errors in (25) by the final filtering 
error at the output of the last  cell:   

tiL

P

i

T
tittL

XHy ,
1

1,, ∑
=

−−=ε                                       (28) 

as shown in Fig.2 for the case with µ=0. 

3.4. Algorithm 4 

The equations of algorithm 4 are based on the update 
equation of algorithm 1 and the split structure of 
algorithm 2 (the same structure as Fig.1). This mixing 

improves the performance of the resulting algorithm 
when it’s used with time varying systems, but it doesn’t 
improve the convergence speed for stationary cases.  

3.5. Algorithm 5   

This algorithm is based on an update equation as in 
algorithm 1 and on the structure of algorithm 3 (as in 
Fig. 2). Thus a scalar variable µ  is introduced into the 
filtering parts. This version gathered the advantages of 
algorithms 1 and 3, which is why it has proved to be the 
best compared to the other versions. This version gave  
good results compared to the other algorithms for the 
tests of convergence speed with stationary acoustic 
channels, and the best tracking capability when tests 
with non-stationary acoustic channels were performed. 

tL
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tLtLtL ii
XH ,1,1,,, −− −= εε                                     (29) 

tLtL
tL

tLtL i

i

CHH ,,
,

1,, 1

1 ε
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−= −                          (30) 

tLtitLtL iii
CHH ,,1,, ε−= −          i = 1,2,….,P           (31) 

4. NUMERICAL STABILIZATION OF THE 
NEW ALGORITHMS 

We have used a basic numerical stabilization method 
[1] to stabilize the five proposed algorithms. The 
adaptation of this method to the proposed techniques 
allows for each subdivision of the P  adaptive filters 
that are generated by the new FNTF algorithms to 
propagate divergence indicator variables which are 
calculated as follow:   

tN
b

tN

b
tNtNtN

tNtNtN
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rCr
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+=
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−+=

−+= +
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                           (32) 

where the parameters γµ , βµ and bµ allow the 
modification and the control of numerical error 
propagation in the algorithms. To ensure the numerical 
stabilization of each of the P  subdivisions of the 
proposed new FNTF versions, the condition on the 
forgetting factor value for each subdivision has to be 
satisfied:  

5.32

1
11

+
−

N
ff λ   [1],[6]                                     (33)    

5. EXPERIMENTAL RESULTS  

To test the convergence and tracking capabilities of the 
new FNTF algorithms, an acoustic channel variable in  
time was used. This 1700 samples channel represents a 
room with a person slowly moving in the room. The 
channel is measured under real conditions [6]. To 
evaluate the performance of each  FNTF version, the 
following criteria was used:  

⎟
⎠
⎞

⎜
⎝
⎛= 22

1010 t,Lt,Lt y/LogJ ε                      (34)               
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where 2
,tLε  and 2

,tLy  represent the means of L 

values of the filtering error and the echo signal. 
Convergence curves with a real non-stationary system 
and a slow  movement of the person in the room [6] are 
displayed in Figs. 3 and 4 for each new version of the 
FNTF algorithm. Fig. 3 shows the better behavior of 
algorithm 3 over algorithm 1 and algorithm 2. It can 
also be seen that the filtering part modification 
(algorithm 1) is more effective than the temporal 
subdivision of the prediction part (algorithm 2). Fig. 4 
compares the best algorithm of Fig.3 (algorithm 3) with 
algorithms 4 and 5. Even though each algorithm 
improves the tracking capability of the original FNTF 
version, it can be seen that the improvement of 
algorithm 5 is better than the others. Algorithm 5 uses 
both a split prediction and the final filtering error.  

6. SUMMARY 

In this work, 5 new versions of the Fast Newton 
Transversal Filter algorithm were presented. All the 
proposed algorithms improve the convergence speed for 
stationary cases, except the second algorithm. The 
simulation results have shown that all the proposed 
algorithms improve the tracking ability performance. 
The comparative study has also shown that the fifth 
algorithm is more effective than the others, because it 
gathered the advantages of two techniques, i.e. the 
filtering part modification and its temporal subdivision. 
It has also been observed that the performance 
properties of the new algorithms depend directly on the 
accelerated parameter value µ and on the subdivision 
number P. It should be noted that no numerical 
divergence problems were experienced in the 
simulations.  
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Figure 1. Temporal subdivision of the FNTF algorithm, 
first approach. For µ=0: algorithm 2, for µ=µi:
algorithm 4. 

Figure 2. Temporal subdivision of the FNTF algorithm, 
second approach. For µ=0: algorithm 3 , for µ=µi:
algorithm 5.

Figure 3. Convergence and tracking performance of 
algorithm 1, algorithm 2, and algorithm 3.  

Figure 4. Convergence and tracking performance of 
algorithm 3, algorithm 4, and algorithm 5.  
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