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ABSTRACT

In this paper, we propose a novel structure for adaptive sign

least mean squares (ASLMS). A powerful adaptation scheme
is used to adapt the step-size of the sign function inside the

recursion of the sign algorithm. It is shown how the algo-

rithm can be implemented with no real multiplication. Sim-

ulation result show that the performance of the proposed al-

gorithm can be made arbitrarily close to that of the original

least means squares algorithm.

1. INTRODUCTION

Least mean squares (LMS) algorithm is widely used and
well-established adaptive filtering algorithm. LMS is used
to estimate parameters or weights from a measured process.
The weights update of LMS is given by the recursion [1]

wi—y + pul [d() —wwi—1], i>0 (1)

w;

wo = initial weight vector
where
w; : M x 1 weight vector at iteration 7
u; : 1 x M regression vector
d(i) : scalar desired signal

p o fixed adaptation step — size

and the star (*) indicates the conjugate transpose. The de-
sired signal d(¢) is assumed to be drawn from a process with
desired optimum weights wy with additive process noise
v(i), i.e.,

d(i) = u;w; + v(i). (2)

The a priory estimation error e, () is defined as

1>

ea(?)
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while the a posteriori estimation error e (4) is given by
NA
ep(i) = d(i) — usw;. “)
The mean-square error (MSE) is defined here as
MSE £ Ele,(i)[>. (5)

Other versions of LMS are also widely available (such as
Sign-LMS (SLMS)!, Sign-Sign LMS (SSLMS), Normal-
ized LMS (NLMS), and Recursive Least Squares (RLS))
that offer compromise between performance and complex-
ity.

Sign LMS is similar to LMS except that the adaptation
rule involves only the sign of the a-priory error, namely,

w; = wi—1 + puisign[d(i) — u;w;—1], >0 (6)

wog = initial weight vector

This equation can be represented in a block diagram as
shown in Fig. 1. The error between the desired output d(7)
and the actual output J(z) = u;w;_1 is measured. The er-
ror sign s(7) is then computed and multiplied by both the
fixed step-size p and the conjugate vector u. The result is
then accumulated to produce the updated weight vector. The
thick lines indicate vector operations while the thin lines in-
dicate scalar operations.

SLMS provides simpler implementation than LMS mainly
because it involves sign multiplication. This is especially
important for high speed applications where hardware im-
plementation is necessary [2]. Rigorous analysis of the sign
LMS is covered in [3] and [4].

Looking closely at Fig. 1, we notice that the structure of
SLMS algorithm is similar to that of a linear delta modula-
tor ? shown in Fig. 2. Similar to delta modulators, one prob-
lem with SLMS is that the signum function introduces large
quantization error, which is usually manifested in large MSE.
This fact becomes a problem when the optimum desired fil-
ter tap weights are small in amplitude. In this case, the

1Sign-LMS is also known as the sign algorithm (SA).
2This is more evident when you consider the scalar case with u(4)=1.
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Fig. 1. Block-diagram representation of the SLMS algo-
rithm.

noise created by the signum function becomes evidently no-
ticeable compared to the amplitude of the filter tap weights,
limiting the dynamic range of the adapter. One way to re-
duce these errors is to use small adaptation step-size, which
usually slows down the convergence of the algorithm [5].
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Fig. 2. Linear Delta Modulator.

2. STEP-SIZE ADAPTATION

In a previous study, a new step-size adaptation scheme
was proposed [6]. The scheme is shown in Fig. 3. The
adaptation loop (the dashed box) is simply trying to track
the absolute value information of the input to the single-bit
quantizer Q1. In other words, the signal s(i) carries the
sign information of the input e, (i), while the absolute value
information is tracked by the signal f(i). As a result, the
multiplication

v(i) = (i) f (i)

should approximate the input e, (7). This adaptation scheme
was impeded in two applications, namely, delta modulation
and sigma delta modulation [7, 8]. The adaptation scheme
improved the SNR, convergence speed, and dynamic range
of these modulators.

In this work, we apply the step-size adaptation scheme
of Fig. 3 to the sign algorithm. More specifically, the sign
block of the sign algorithm shown in Fig. 1 will be replaced
by this adaptation scheme. The purpose of this alteration is
to reduce the impact of the sign block on the performance,
getting as close as possible to the behavior of the original
LMS algorithm.

Step Size Adaptation

Fig. 3. Step-size adaptation scheme.

Step-size adaptation
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Fig. 4. The proposed adaptive step-size sign algorithm.

3. STRUCTURE OF THE ADAPTIVE SIGN
ALGORITHM

The structure for the proposed adaptive sign algorithm
is shown in Fig. 4. The structure is similar to that of the sign
algorithm of Fig. 1 except that the step-size of the sign func-
tion (or single bit quantizer) is now adapted. The adaptation
scheme discussed in Sec. 2 and presented in Fig. 3 is used
for this purpose. The equations governing the dynamics of
the step-size adaptation are

s(i) = signleq(i)] @)
) = Ssignllea(i)] - £~ 1) ®
f@) = asg(i)f(i —1), f(0) =initial guess (9)
v(i) = s(i)f(i). (10)

The constant A is the quantization step-size of (J2. It can
be verified that equation (9) can also be written as

f(i) = (11)
with

p(i) = p(i — 1) + s2(i), p(0) = initial guess.  (12)

II-670



We will show in section 5 that by proper choice of the
exponent constant o inside the adaptation loop and the fixed
step-size (, one can achieve a performance close to that of
the original LMS algorithm. In the next section, we will
show how this can be achieved without compromising the
advantage of the sign algorithm, namely, the multiplication-
free recursion.

4. IMPLEMENTATION ISSUES OF THE
ADAPTIVE SIGN ALGORITHM.

The developed adaptive step-size algorithm will have a
meaning only if it maintains the multiplication-free advan-
tage of the sign algorithm. In this section we will show that
the proposed algorithm in fact can be implemented in digital
circuits with no real multiplication.

To see that, let us go back to the adaptation loop shown
in Fig.3. Its output f (%) is described by (9), namely,

(i) =a2Df—1).

Letus set « = 2 and A = 2, where A is the step-size of the
quantizer ()2. Then from (8) and (9)

SQ(i) ==1

and
oo A=), i s(i) = 41
0= {%f(i —1), if s2(i) = —1. 13)

If we assume that f(0) is a power-of-two number, then f (%)
is also power-of-two V i. Therefore, the binary represen-
tation of f (i) always consist of one binary digit that is 17
and the rest are ”0”. Furthermore, this digit will simply shift
one bit to the left or right depending on the value of s (3).
This process is illustrated in Fig. 5.

Since f(i) is always a power-of-two number, the mul-
tiplication s(¢) f (i)u; appears in Fig. 4 can be simply con-
ducted by shifting u} by the amount in f(7) and then keep-
ing or flipping the sign of the result depending on the value
of s(i).

Therefore, we can conclude that if @« = 2 and A = 2,
then the proposed adaptive sign algorithm can be imple-
mented digitally simply by shift registers and with no real
multiplication.

5. SIMULATION

In this section, we show the performance of the pro-
posed adaptive sign algorithm using simulations on Matlab.
The algorithm is used in the identification problem of a 4-
tap FIR system with desired weight vector of w, = [5.1 3.2
2.5 1.5]7 starting from initial weights wo = [50 50 50 50].
The exponent constant « is set to 2 while the step-size p is
chosen arbitrarily as 0.1.

C compute s, (i) >
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Fig. 5. Implementation of the adaptation loop using a shift
register.

Fig.6 shows the learning curves of the LMS, sign al-
gorithm (SLMS), and the proposed adaptive sign algorithm
(ASLMS) over 100 runs. In this case the process noise is
set to zero. The proposed algorithm shows superior perfor-
mance compared to the sign algorithm. The performance of
the proposed algorithm is comparable to the original LMS
algorithm. In this case, the adaptation scheme almost com-
pletely eliminated the effect of the sign function on the re-
cursion.
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Fig. 6. Learning curves of the proposed algorithm com-
pared to sign algorithm (SLMS) and LMS algorithm with
no process noise.

The experiment is repeated but with process noise vari-
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ance (02) of -40dB. The idea here is to see if this noise will
have an impact on the performance of the proposed algo-
rithm. The resulting MSE curve is shown in Fig.7. Again,
the proposed algorithm shows a performance close to the
LMS algorithm, which is way better than that of the sign
algorithm.
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Fig. 7. Learning curves of ASLMS, SLMS, and LMS algo-
rithms with process noise.

6. CONCLUSION

In this work, we proposed a novel structure for adaptive
sign least mean squares (ASLMS). A powerful adaptation
structure was used to adapt the step-size of the sign function
inside the recursion of the sign algorithm. It was shown how
the proposed algorithm can be implemented with no real
multiplication. Simulations showed that the proposed algo-
rithm has a superior performance compared to the sign al-
gorithm. The adaptation loop almost completely eliminated
the effect of the sign function resulting in a performance
close to that of the original LMS algorithm.
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