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ABSTRACT

The computational complexity and memory load of the Adaptive
Finite Impulse Response (AFIR) filter are significant for a large
filter size. Adaptive Interpolated FIR (AIFIR) filter, which uses a
sparse adaptive filter followed by an interpolator, has been shown
to be a better alternative. However, when the AIFIR filter is im-
plemented, the coefficients of the interpolator must be designed
in advance based on prior information about the application at
hand. Such information is not always available and the design of
a proper interpolator is sometimes difficult. In this paper we in-
troduce a new structure called Double Adaptive Interpolated FIR
(DAIFIR) filter in which the fixed interpolator is replaced by an
adaptive filter of the same length. We show by means of simu-
lations that the behavior of the proposed structure is close to the
behavior of the AIFIR having a proper designed interpolator. In
situations in which a fixed interpolator cannot be designed in ad-
vance the DAIFIR might be a good alternative.

1. INTRODUCTION

The Adaptive Finite Impulse Response (AFIR) filters are widely
used in many practical applications due to their advantages, such
as, simplicity of implementation [1], [2]. However, their computa-
tional complexity and memory load is proportional to the number
of coefficients of the adaptive filter. As a consequence, in applica-
tions where a long adaptive filter must be implemented, the com-
putational complexity and memory load can be huge (for example,
in echo cancellation, there is a necessity to use a large FIR adaptive
filter to model the echo path which highly increase the complexity,
[3]). In such applications, the Adaptive Interpolated FIR (AIFIR)
filters represents an interesting alternative which gives an impor-
tant reduction of the arithmetic operations for both filtering and
weight updating and also improves the memory usage.

The class of AIFIR filters was derived from the class of In-
terpolated FIR (IFIR) filters first introduced by Neuvo et all. in
[4]. The main idea of the IFIR filters is to remove a number of
coefficients from an FIR filter and then recreate them using an in-
terpolator. In [4], the sparse filter and the interpolator have fixed
coefficients and they are designed based on some priory informa-
tion about the application at hand [5], [6], [7].

The class of AIFIR was introduced to reduce the computa-
tional complexity and memory load in applications in where a
large adaptive filter is to be used (see [3], [8], [9] and the references
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Fig. 1. Block diagram of the Adaptive Interpolated FIR filter.

therein). In the case of AIFIR, a sparse adaptive filter followed by
an interpolator with fixed coefficients is used, instead of a long
adaptive filter, which highly decrease the complexity. We note,
that the interpolator plays an important role in the performance of
the AIFIR and design procedures for the interpolator with fixed
coefficients can be found in [4], [6]. In some applications, no in-
formation about the Wiener solution is available and the design of
a proper interpolator might be difficult.

In this paper, we introduce a new structure called Double Adap-
tive FIR (DAIFIR) filter in which the fixed interpolator is replaced
by an adaptive filter of the same length. We show by means of sim-
ulations that the behavior of the proposed structure is close to the
behavior of the AIFIR having a proper designed interpolator. In
situations in which the interpolator cannot be designed in advance,
the DAIFIR might be a good alternative. Comparison between the
AFIR, AIFIR and DAIFIR filters in terms of computational com-
plexity and memory load are also presented.

2. THE ADAPTIVE INTERPOLATED FIR FILTER

The block diagram of an AIFIR filter is presented in Fig. 1, where
‘W (n) represents a sparse FIR adaptive filter having L zeros be-
tween nonzero coefficients, the block denoted by I represents the
interpolation filter with fixed coefficients which recreates the re-
moved samples from W (n), z(n) is the input signal, d(n) is the
desired signal and e(n) is the output error.

The coefficients of the adaptive sparse filter W (n) are adapted,
such that the expected value of the squared error is minimized. To
handle the sparse nature of the filter W (n) a constrained approach
can be used (see [8], [10]) and the constrained cost function to be
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minimized is the following:

E [e*(n)], 6))
C'W(n) =f. )

minimize
subject to

(C and f given below in (9) and (10))
From (1) and (2) the adaptive constrained LMS algorithm, to

adapt the sparse FIR filter W (n) is derived and it can be described
by the following steps:

1. Compute the output of the filter W (n):

y(n) = W' (n)X(n), 3)
where
X(n) = [z(n),z(n — 1),...,x(an+1)]t, “)

is the vector of the past N samples from the input signal z(n) and
N is the length of the adaptive filter W (n).

2. Compute the output of the interpolator:

yr(n) =1"Y (n), )

where I = [i1,42,...,1 M]t is the vector containing the interpola-
tor coefficients and Y (n) = [y(n), y(n — 1),...,y(n — M + 1)]"
is the vector of the past M samples from the signal y(n).

3. Compute the output error:

e(n) = d(n) —yr(n), (©)
4. Compute the filtered input vector X;(n) (see Fig. 1):

M-—1

X;(n) = Z i;X(n - j), )

where X (n) is given in (4).

5. Update the sparse adaptive filter weights:

W(n +1) = F{W(n) + pe(n)Xi(n)} +q, ®)

where F = Id — C (CtC)_1 C! is the projection matrix (Id
being the identity matrix of order N) and q = C (C*C) s
the correction vector (see [10]).

The matrix C and the vector f for N odd and L = 1 are
expressed as follows:

01 000 00 0
00010 ... 000

c' = o ©)
00000 ... 01 0],

f = [0...0]}, , =0xx1 (10)

where K is the number of non-zero coefficients in the sparse filter
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Fig. 2. Block diagram of the proposed filter.

As a consequence, the matrix F and the vector q in (8) can be
written as follows:

100 0 0 00 0
00000 00 0
00100 00 0

F - |00000 00 0 (11
000 0 1 00 0
L0000 0 ... 00 1],

a = [0...0,x 2

From (11) and (12), one can see that (8) is equivalent to the
update equation of the standard LMS, in which just K coefficients
are adapted provided that W (n) is initialized with zeros. As a
consequence, the multiplication by F and addition of q does not
introduce extra computations in (8).

For detailed analysis of the AIFIR see [8] and [11]. In the
referred papers, the behavior of the mean weight vector and the
behavior of the weight-error covariance matrix are studied. How-
ever, in the papers published so far, the interpolator has fixed co-
efficients and it is designed based on some available information
about the optimum solution.

In this paper, the AIFIR algorithm is modified such that the
coefficients of the interpolator are adapted using the Normalized
LMS (NLMS) algorithm.

3. THE NEW APPROACH

The block diagram for system identification of the new DAIFIR is
depicted in Fig. 2, where we have used the same notations as in
Fig. 1. The difference between the two approaches is that in the
new implementation the interpolator (denoted by I(n)) has time-
variable coefficients adapted by the NLMS algorithm.

The new algorithm can be mainly described by the same five
steps given in the previous section. The difference is that, after the
fifth step the coefficients of the interpolator I(n) are also adapted
as follows:

I(n+1) =1I(n) + ——"

e+ go y2(n — j)

e(n)Y (n). (13)

where p 1 is the step-size used to update the coefficients of the in-
terpolator, e(n) is the output error (see Fig. 2),
I(n) = [i1(n),...,ia(n)]" is the M x 1 vector containing the co-
efficients of the interpolator, Y (n) = [y(n), ..., y(n — M + 1)
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is the vector containing the past M samples from the signal y(n)
and € is a small constant.

The DAIFIR filter has a slightly increased complexity com-
pared with the AIFIR due to the extra computations required by
the interpolator adaptation as shown in Table 1. When compared
with the AFIR filter, the AIFIR and the proposed DAIFIR have
lower complexity (especially the memory load).

Table 1. Complexity in terms of memory load and number of arith-
metic operations for the AFIR, AIFIR and DAIFIR filters (the nu-
merical values are those used in the experiments).

Ad. filter Mem. load Mult.+Div. Add.+Sub.
AFIR 2N+4=258 2N+1=255 2N=254

AIFIR 3M+N+3+ KM+1)+ K(M+1)+

+2K=195 +2K+1=229 M-1=198

3M+N+6+ K(M+2)+ KM+1)-1

DAIFIR +2K=198 +3M+3=239 +3M=216

4. SIMULATIONS AND RESULTS

The proposed DAIFIR filter is compared with AIFIR and AFIR
filters, in system identification framework where the desired signal
d(n) is obtained from an FIR filter W of length N as follows:

N

d(n) = Z w;x(n —i+ 1) + v(n).

i=1

where w; is the i*" coefficient of W and v(n) is the output noise.

The output signal to noise ratio, in all experiments, was SN R =
30dB. The length of the FIR filter W, the lengths of the sparse
filters in AIFIR and DAIFIR and the length of the AFIR filter was
N = 127. The sparse filters in the AIFIR and DAIFIR have just
K = 19 nonzero coefficients (there are . = 6 zeros between
nonzero coefficients). The length of the interpolating filters I and
I(n) in AIFIR and DAIFIR was M = 9. The complexity of the
compared adaptive filters, in terms of number of mathematical op-
erations and memory load, are shown in Table 1. We can see that
the DAIFIR and AIFIR has comparable complexities which are
lower than the complexity of the AFIR filter.

Two experiments were done in order to compare the behavior
of the AFIR, AIFIR and DAIFIR filters. In the first experiment, the
unknown system has a low-pass frequency response with normal-
ized cut-off frequency f. = 0.05. The interpolator I of the AIFIR
was designed to have also a low-pass frequency response with the
same normalized cut-off frequency. In the second experiment, the
unknown system has a high-pass frequency response with the nor-
malized cut-off frequency f. = 0.95, while the interpolator of the
AIFIR was the same as in the first experiment.

The output mean squared error (MSE) of each of the compared
filters are shown in Fig. 3, Fig. 4 and Fig. 5 for the first experiment
and in Fig. 6, Fig. 7 and Fig. 8, for the second experiment. The
learning curves shown in the figures were obtained by averaging
100 Monte-Carlo simulations of 10* iterations each. From Fig. 7
and Fig. 8, we can see that the proposed filter performs better than
the AIFIR in the second experiment. This is because the AIFIR
uses a fixed interpolator which was not properly designed, while
the DAIFIR uses an adaptive interpolator.

5. CONCLUSIONS

In this paper, a modification of the known AIFIR filter is proposed
in which the interpolator used for reconstruction of the zero taps
is adapted using the NLMS algorithm. The new DAIFIR filter can
be used in the applications where no information about the optimal
solution is available, and, therefore a fixed interpolator cannot be
designed.
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Fig. 3. Mean squared error of the AFIR (first experiment)
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Fig. 4. Mean squared error of the AIFIR (first experiment)

MSE for DAIFIR (first experiment)
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Fig. 5. Mean squared error of the DAIFIR (first experiment)
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MSE for AFIR (second experiment)
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Fig. 6. Mean squared error of the AFIR (second experiment)
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Fig. 7. Mean squared error of the AIFIR (second experiment)

MSE for DAIFIR (second experiment)
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Fig. 8. Mean squared error of the DAIFIR (second experiment)
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