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ABSTRACT

A new family of IIR adaptive notch filters is presented. The
family proposed is based on a second-order factorization of
the all-pass transfer function that forms the multiple notch
filter. These realizations represent an extension of a previ-
ous ad-hoc scheme for adaptive notch filtering, that avoid
a high-order polynomial root finding in order to obtain the
unknown frequencies of interest. An interesting aspect relat-
ed to these novel algorithms is the fact that they introduce
a different compromise between bias and SNR if compared
with previous realizations available in the literature. Specif-
ically, lower bias than in other approaches for low SNR
can be achieved using the new realizations. This property is
particularly attractive for multiple sinusoids estimation and
tracking. In addition to the algorithm presentation, a discus-
sion of the different properties and characteristics (station-
ary points, convergence) is also included. Also, computer
simulations are presented in order to illustrate the expected
performance of the adaptive filters proposed.

1. INTRODUCTION

The classical problem of multiple sinusoid frequency es-
timation can be traced back to the Adaptive Line Enhancer
[13] where MSE minimization using a k-step FIR predic-
tion filter was the basic structure. Computation of unknown
frequencies require the calculation of the roots of the associ-
ated polynomial. FIR solutions have proven to be inefficient
to recover sinusoids in noise, mainly because a high-order
filter is required to model a deep notch filter.

Due to its natural efficiency IIR based adaptive notch fil-
ters (ANF) or their dual, narrow pass-band filters with a very
selective frequency characteristic, are increasingly used in
practical cases. In spite that an exact solution is not possi-
ble, nice and efficient approximations can be obtained using
IR ANF realizations of adequate order. A popular [IR ANF,
proposed in [7], contemplates a canonical (minimum num-
ber of parameters corresponding to each of M unknown fre-
quencies to estimate) direct-form realization of order 2M.
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The zeros of the ANF are located on the unit circle and the
module of the poles (at the same radius but, logically, inside
the unit circle) is a user defined parameter. Properties and
accuracy of this ANF have been extensively studied in the
literature [8], [12]. Despite that classical estimation proper-
ties ([6]) can be related to this model, no direct availability
of the estimated frequencies is obtained except by finding
the roots of a high-order (2M) polynomial.

Alternative ANF using the same model but with differ-
ent realizations were also studied in the past, most remark-
able the approaches of [5] or [2] (see also [14]). In these
cases a cascade of second-order ANF was proposed to over-
come the problem of direct availability of the frequencies
of interest. Two different realizations of the second-order
ANF can be considered, quality factor (Q) constant or notch
bandwidth constant. As concluded in [2], this kind of ANF
are biased due to input measurement noise.

A different notch filter model based on a serial-sinusoid
canceller strategy, using cascaded second-order all-pass lat-
tice sections, was presented in [9]. Zeros and poles for each
section in this model are, respectively, outside and inside
the unit circle. In this case, individual second order sections
were based on the notch bandwidth constant realizations.
An ad-hoc updating algorithm using local errors was pro-
posed [10]. In spite of the low computational complexity
obtained using the serial-sinusoidal cancelling strategy for
multiple sinusoid estimation, the fact of using local errors in
the ad-hoc updating algorithm does not leads to a robust be-
havior, even more when considering tracking applications.

We consider here a generalization of the model discussed
in [9], i.e., different to what was proposed there, the over-
all all-pass filter is factorized in second-order sections. For
the single-sinusoid case both algorithms coincide. This fac-
torization leads to important differences with respect to the
previous approaches as discussed in the following sections.
The most interesting aspect of the new ANF proposed is
that they introduce a different bias performance if compared
with other alternatives. Specifically, a lower bias than with
other algorithms for low SNR can be obtained.

The article presentation is organized in the following
manner. Novel ANF algorithms using the all-pass factor-
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ization concept are presented in section 2. Some of the most
important characteristics of the algorithms proposed are dis-
cussed in Section 3. A discussion of general properties and
comparisons, by computer simulations, with other ANF avail-
able in the literature are presented in Section 4. Finally,
some conclusions are included in Section 5.

2. THE FACTORIZED ALL-PASS IIR ADAPTIVE
NOTCH FILTERS

The input signal u(n) considered is formed by M sinu-
soids with unknown amplitude p; and frequency w,;, im-
merse in additive measurement noise v(n), with variance
o2, The input signal is given by

M
= Zpi sin(wein + 1;) + v(n)

where 7); is the cér:résponding phase of sinusoid ¢. The notch
filter H(z), defines an output signal y(n) = H(z)u(n). The
output signal variance is given by

E[y*(n)|=< H(2),H(z) >s, + < H(2),S,(2)H(z) >
where the first term describes the inner product induced
by the sinusoidal components, i.e., < H(z), H(z) >g,=
M P2 H(e7)|2. S, (2) is the power spectral density of
v(n), and the second term is the standard inner product in
Loy, < H(2),S,(2)H(2) >= 5= [7_S,(e7")[H(e7)[*dw.

The factorized all-pass notch filter H ( ) is defined by

H(z) = L FL+V( 1+ H Vi(z
where
Vi(z) = D;(z) _ Sait s16(1+ s95)27 + 272
! Di(z) 14 s1;(1 4 89;)271 + 59,272

s1; = sinfy; and sg; = sinfy;. Note that using this re-
alization the independence between notch frequencies and
the corresponding 3-dB bandwidths B; for each pole pair is
maintained. Note also that, on the unit circle, and in terms of
their phase ¢;(w), Vi(e/®) = eI%:(*) can be described by

cos(¢;(w) /2) = Lreaallentoost) and also sin(g; (w)/2)
= U208 and | Di(w)[2 = (1+52:) (1, +cos w)? +

(1 — s94)%sin” w.

Using this new model, a family of ANF can be devel-
oped [11]. Specifically, one kind of algorithms can be de-
signed using a Recursive Prediction Error approach (simi-
lar to that in [7]). For space reasons we discuss here only a
different, not conventional, approach.

Using the factorized all-pass model (i.e., avoiding the
root-finding requirement for a direct-form realization as in
[1]), an a posteriori off-line error linear in the parameters is
defined to minimize the output signal variance. The mini-
mization of the following error is considered

*"'i‘l n+1
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Fig. 1. Gradient and filter realization for the Factorized all-
pass based adaptive notch filter, sixth order example.

In order to obtain an on-line algorithm, suitable for adaptive
notch filtering, the a priori error obtained from (1) can be
written as

HHDnz]

Then, following the instantaneous gradient of the on-line
mean-squared-error, the regressor is given by

2_1

Uy, (n) = _[Di(z)+Fi<Z)] u(n)

where Fi(z) = 4 (z) Hk;éz Z; defines an ortogonal ba-
sis € Lo, useful not only for analy51s but also to describe the
realization of the proposed ANF [4]. Finally, the following
update equations for the Factorized all-pass adaptive notch
filter (FANF) results

Bri(n+ 1) mmw+ﬁ%dmwhm> )
r(nt1) = (1= Nr(n) + ulTs, (n)]?

where 0 < A < 1 is the forgetting factor and p (=2 1 —
M) is the step size. An efficient realization of the FANF is
illustrated in Figure 1, where the orthogonal functions F;(z)
were used. A justification for the normalization factor r(n)
will be given in the next section.

3. CHARACTERIZATION AND PROPERTIES

In order to study FANF stationary points and conver-
gence (for v(n) white noise) we consider, for the moment,
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only (2). Then, using the inner product notation, we obtain

g ([ o] i),

001;
—o? < Li(;) + Fi(z)} S+ V(Z)]>
3)

that is formed by a signal induced part and a noise induced
part, respectively. Considering only the noise induced part,
and using the fact that F}(z) is an ortogonal basis related to
V(z) [4][10], it follows that

<M,1> + (271 Fy(2),1)
+ <1, z_lFi(z)> + <1,

271F(2)) =0

since all these inner products involve projections of strictly
causal functions on a constant. This indicates that the noise
induced term does not have any influence on the stationary
points.

On the other hand, using the second-order section all-
pass phase ¢;(w) and after some straightforward (but te-
dious) algebraic manipulations, the signal induced part can
be written as

OE[e?
8911

(bi(wo )
Z|D (wo)| {COS( 2 =)
¢i('wok)

2

+ (bl (wok))

where ¢'(w) = Z%Zl mi @i(w). After some reordering
this can be written as

+ cos(

OE[e*(n)]
gEle Tl — By — B 4
8012' 13 21 ( )
where
2p3 (1 + s2:) 2, ¢ (Wor,) _
E |D P {cos ( 5 )| (515 + cos wor)

[COS ( aﬁ"(;&)k) ) sin d)i(z;}ok-) )} Sinw,

Z 2pk? 1 — 322
|D wok |2

Remarks:

i) Following a local analysis, it is not hard to note that close
10 Wok, & (wo) = 27q, for some integer ¢, 1 < ¢ < M —
1 (all sections converged except the ¢), then Bs; =2 0 and
By, 2 0atsy; = —coswe, fork=1,---, M.

i) Bo; represents a deterministic bias (for constant w,; ) that
can be asymptotically eliminated using so; — 1, in general.
iii) Due to the term |D;(wor)|? at wy;, for so; — 1, the
dominant term in By; results in

OFE[e?(n)) B pr(l + s59;)

901, Dilwg S0 O

FANF ODE fors,  (8th-order)

0,201

Normalized ODE

Fig. 2. ODE associated to FANF for an 8th-order example.

then convergence can be proved (see [10], Chapter 10).

iv) As expected, for a cascade realization, there are multiple
equivalent stationary points, in the same way that in [5] or
(2].

v) Since only sy; intervenes in (5) (i.e., at the stationary
points the gradients are approximately orthogonal), then a
normalized stochastic gradient algorithms will have simi-
lar convergence behavior that a complete Gauss-Newton al-
gorithm. This justify the choice of the normalization factor

r(n).

4. EVALUATION AND COMPARISONS

In order to illustrate the behavior of FANF, stationary
points can be characterized evaluating (3). Figure 2 depicts
the frequency evaluation (using s1; = — cosw) for a four-
sinusoids example of OE[e?(n)] /3011, where s; = 0,8, 0,9
and 0,95 were used. As can be observed, there are multiple
stationary points and when s9; — 1 the ODE is dominated
by s11 & —cosw,.

As advanced, an interesting aspect of FANF bias (in ad-
dition that it can be reduced with so; — 1) is the fact that
it is not related to the input SNR, as is the case of [5] or
[2]. In order to illustrate this, the ODE associated to both
algorithms: FANF and [2], for a 4-th order example, was
evaluated in terms of the SNR. This is depicted in Figure 3
where, different from the fixed bias related to FANF, the so-
lution of [2] has a SNR-related bias. As can be noted, lower
bias for lower SNR is obtained with FANF.

More interesting is the performance of the FANF when
tracking is the main objective. A study of the performance
of the FANF for the same frequencies than in the first exam-
ple is illustrated in Figure 4. In this case, the SNR is 0 dB
and the evaluation was made considering a linear variation
(chirp rate § = 10™%) in we1 with s9; = 0,95. Similar to
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Fig. 3. Bias in w,; using FANF (o) and the algorithm of [2]
(+), for a 4th-order example, for different input SNR.

other extensive computer simulations performed, a constant
tracking error can be observed. This behavior is analogous
to that obtained in [3]. This was expected since both algo-
rithms are similar near stationary points, although no formal
proof is available yet.

5. CONCLUSIONS

A new family of IIR ANF in the context of a factorized
all-pass based realization was presented. A study of the sta-
tionary points and local convergence analysis was also out-
lined. Evaluation and comparisons were used to illustrate
the expected properties of the algorithms presented. Ow-
ing to their particular kind of bias, the new algorithms rep-
resents an interesting alternative for tracking applications.
Further research is being performed to characterize formal-
ly their tracking performance, although preliminar result ob-
tained using extensive simulations are promissory.
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