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ABSTRACT

The problem of identification/tracking of quasi-periodically
varying systems is considered. This problem is a general-
ization, to the system case, of a classical signal processing
task of either elimination or extraction of nonstationary si-
nusoidal signals buried in noise. The proposed solution is
based on the exponentially weighted basis function (EWBF)
approach. First, the global EWBF algorithm is derived and
its decomposed, parallel-form and cascade-form variants,
are described. Then the frequency-adaptive versions of both
schemes are obtained using the recursive prediction error
method. In the (special) signal processing case the paper
offers new attractive solutions to the problem of adaptive
notch filtering.

1. PROBLEM STATEMENT

Consider the problem of identification/tracking of coeffi-
cients of a complex time varying system governed by

y(t) =
n∑

l=1

θl(t)u(t − l + 1) + v(t)

= ϕT(t)θ(t) + v(t) (1)

where t = 1, 2, . . . denotes the normalized discrete time,
y(t) denotes the system output, ϕ(t) = [u(t), . . . , u(t −
n + 1)]T is the regression vector made up of the past in-
put samples, v(t) is an additive (white) noise, uncorrelated
with u(t), and θ(t) = [θ1(t), . . . , θn(t)]T denotes the vec-
tor of time varying impulse response coefficients, modeled
as weighted sums of complex exponentials

θl(t) =
k∑

i=1

ali(t)e
j

tP
s=1

ωi(s)
, l = 1, . . . , n (2)

We will assume that for every frequency component i, i =
1, . . . , k the quantities ali(t), l = 1, . . . , n and ωi(t) are
slowly time-varying. The system, governed by (1) - (2),
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which obeys the above-mentioned limitation, will be further
referred to as quasi-periodically time-varying.
One of the challenging potential applications, which un-
der certain conditions admits formulation presented above,
is adaptive equalization of rapidly fading communication
channels – see e.g. [1] and [2] for more details.
For n = 1 and u(t) = 1,∀t the model (1) - (2) becomes a
description of a noisy nonstationary multifrequency signal

y(t) =
k∑

i=1

ai(t)e
j

tP
s=1

ωi(s)
+ v(t). (3)

the Hence, when restricted to the special case discussed
above, the results developed in the paper offer a new solu-
tion to the problem of frequency tracking and adaptive notch
filtering.

2. KNOWN FREQUENCIES

Suppose, for the time being, that both the amplitudes and
angular frequencies in (2) are constant, i.e. that the changes
in system parameters are governed by

θl(t) =
k∑

i=1

alie
jωit, l = 1, . . . , n (4)

Let αi = [a1i, . . . , ani]T, ψi(t) = ϕ(t)ejωit, i = 1, . . . , k.
Using this short-hand notation, (1) can be rewritten in the
form

y(t) =
k∑

i=1

ψT
i (t)αi + v(t) = ψT(t)α + v(t) (5)

where α = [αT
1 , . . . ,αT

k ]T. ψ(t) = [ψT
1 (t), . . . ,ψT

k (t)]T

= f(t) ⊗ ϕ(t), f(t) = [ejω1t, . . . , ejωkt]T and ⊗ denotes
the Kronecker product. Note that αi is the vector of co-
efficients associated with a particular frequency ωi and not
with a particular impulse response parameter θi(t). Sim-
ilarly, ψi(t) is the generalized regression vector associated
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with the ith frequency component. This nonstandard param-
eterization was adopted deliberately. Later on it will allow
us to easily derive decoupled versions of the basic estima-
tion algorithm.
Suppose now that the vector α is slowly varying with time.
It is known that, in the case considered, one can track α(t)
using the method of exponentially weighted least squares
(EWLS). The EWLS estimate of α(t) can be obtained from

α̂(t) = arg min
α

t∑
s=1

λt−s
∣∣y(s) − ψT(s)α

∣∣2 (6)

where λ (0 < λ < 1, 1 − λ � 1) denotes the so-called
forgetting constant - the design parameter which controls
the memory of the estimator, and hence allows one to trade
off between its tracking speed and tracking accuracy. The
recursive algorithm for evaluation of α̂(t) is given by

α̂(t) = α̂(t − 1) + (R∗
α(t))−1

ψ∗(t)ε(t)

ε(t) = y(t) − ψT(t)α̂(t − 1)

Rα(t) = λRα(t − 1) + ψ(t)ψH(t) (7)

Based on (7) one can estimate system parameters using

θ̂(t) = D(t)α̂(t) (8)

where D(t) = fT(t)⊗ In and In denotes the n×n identity
matrix.
Since the algorithm (7) - (8) combines the basis function
parameterization (it is assumed that system parameters can
be expressed as linear combinations of known functions of
time, called basis functions) with exponentially weighted
least squares estimation, it will be further referred to as the
exponentially weighted basis function (EWBF) algorithm
[3], [4].
Another, equivalent form of the EWBF estimator, which
will be very useful for our purposes, can be obtained by
rewriting (7) - (8) in a different system of coordinates. Us-
ing the linear time-varying transformation

β̂(t) = At+1
n α̂(t), Rβ(t) = A−(t+1)

n Rα(t)At+1
n

where An = A ⊗ In and A = diag{ejω1 , . . . , ejωk}, one
can easily convert (7) - (8) into

θ̂(t) = D0β̂(t)

β̂(t) = Anβ̂(t − 1) +
(
R∗

β(t)
)−1

Anϕ∗
n(t)ε(t)

ε(t) = y(t) − ϕT
n (t)β̂(t − 1)

Rβ(t) = A∗
n

[
λRβ(t − 1) + ϕn(t)ϕH

n (t)
]
An (9)

where ϕn(t) = A−t
n ψ(t) = f(0) ⊗ ϕ(t) = [ϕT(t), . . . ,

ϕT(t)]T and D0 = D(t)A−(t+1) = (fT(t)⊗In) (A−(t+1)⊗
In) = fH(1)⊗ In. The last transformation follows from the
identity (X ⊗ Y)(P ⊗ Q) = XP ⊗ YQ which holds for
Kronecker products.

2.1. Parallel decomposition

Denote by
yi(t) = ψT

i (t)αi + v(t)

the output of the ith subsystem of (5), i.e. subsystem asso-
ciated with the frequency ωi. Even though the signal yi(t)
is not available, one can easily estimate it using the formula

ŷi(t) = y(t) −
k∑

l=1
l �=i

ŷl(t|t − 1) (10)

where ŷi(t|t−1) = ψT
i (t)α̂i(t−1) = ϕT(t)β̂i(t−1) is the

predicted value of yi(t) yielded by the estimation algorithm
designed to track parameters of the ith subsystem.
Estimation of yi(t), in the way described above, allows one
to decompose the tracking algorithm, i.e. to replace one
’global’ algorithm (9) with k mutually coupled ’local’ algo-
rithms, each of which takes care of a particular subsystem.
The ith component algorithm can be easily derived from (9)
by setting Ân(t) = ρiIn, ρi = ejωi and ϕn(t) = ϕ(t). To
add some extra design flexibility, we will equip each sub-
algorithm with an independently assigned forgetting factor
λi. The resulting decoupled algorithm can be written down
in the form

β̂i(t) = ρi

[
β̂i(t − 1) + (R∗

i (t))
−1ϕ∗(t)εi(t)

]
εi(t) = ŷi(t) − ϕT(t)β̂i(t − 1)

Ri(t) = λiRi(t − 1) + ϕ(t)ϕH(t) (11)

i = 1, . . . , k

θ̂(t) =
k∑

i=1

ρ∗i β̂i(t)

Note that ε1(t) = ... = εk(t) = y(t)−∑k
i=1 ϕT(t)β̂i(t−1)

i.e. all subalgorithms are driven by the same global predic-
tion error. Therefore the algorithm (11) can be rewritten in
the form

β̂i(t) = ρi

[
β̂i(t − 1) + k∗

i (t)ε(t)
]

ε(t) = y(t) −
k∑

i=1

ϕT(t)β̂i(t − 1)

ki(t) =
Pi(t − 1)ϕ(t)

λi + ϕH(t)Pi(t − 1)ϕ(t)

Pi(t) =
1
λi

[In − ki(t)ϕH(t)]Pi(t − 1) (12)

i = 1, . . . , k

θ̂(t) =
k∑

i=1

ρ∗i β̂i(t)

where Pi(t) = R−1
i (t).
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In order to shed more light on the algorithm described above,
consider the problem of extraction of a complex sinusoidal
signal θ(t) = aejωit, of known frequency ωi, from noisy
measurements y(t) = θ(t) + v(t). In the case considered
the EWBF recursions (12) reduce down to (k = 1, n = 1,
u(t) = 1)

θ̂(t) = ρ∗i β̂i(t)

β̂i(t) = ρi

[
β̂i(t − 1) +

ε(t)
ri(t)

]
ε(t) = y(t) − β̂i(t − 1)
ri(t) = λiri(t − 1) + 1

Note that the gain ri(t) stabilizes at the value 1/(1− λi) as
time goes to infinity, resulting in the following steady-state
relationship between the prediction error ε(t) and the input
signal y(t)

ε(t) = Ni(q−1)y(t)

where the filter Ni(q−1) = (1− ρiq
−1)/(1− λiρiq

−1) can
be easily recognized as the notch filter centered at the notch
frequency ωi, with bandwidth dependent on the forgetting
factor λi. Hence, when used for extraction or cancellation
of nonstationary multifrequency signals buried in noise, the
EWBF algorithm (12) can be regarded as a bank of inter-
connected notch filters.

2.2. Cascade decomposition

The decoupled algorithm presented in the previous subsec-
tion is a parallel structure made up of k identical (from
the functional viewpoint) blocks. Each block is designed
to track a particular frequency component of the parameter
vector θ(t). Connecting the same blocks so that they form
a cascade, one obtains an interesting alternative to the par-
allel decomposition. To obtain the cascade variant of the
EWBF algorithm, the first two recursions in (12) should be
replaced with

β̂i(t) = ρi

[
β̂i(t − 1) + k∗

i (t)εi(t)
]

εi(t) = εi−1(t) − ϕT(t)β̂i(t − 1) (13)

where ε0(t) = y(t).
The cascade-form implementations are widespread in sig-
nal processing. Consider a multi-frequency notch filter re-
alized as a cascade of single-frequency filters. When the
bandwidths of the component filters are sufficiently narrow,
so that they have negligible overlap, each section can elimi-
nate one sinusoid. The first section cancels one sinusoid and
transmits the rest of the signal, with small distortion, to the
second stage, which cancels the second sinusoid (if present)
etc. The cascade-form parameter tracking algorithm (13)
exploits the same frequency decoupling property of narrow-
band filters.

3. UNKNOWN FREQUENCIES

Even though the EWBF filter is robust to small local changes
in frequencies, it will fail to identify the system correctly in
the presence of a frequency drift. For this reason in this
section we will derive two frequency-adaptive EWBF al-
gorithms, capable of tracking the time-varying frequencies
ωi(t), i = 1, . . . , k.
Consider the following standardized form of the ith subal-
gorithm, which fits both realizations discussed in Section II
and explicitly shows dependence of various terms on ωi

β̂(t, ωi) = ejωi

[
β̂(t − 1, ωi) + k∗

i (t)ε(t, ωi)
]

ε(t, ωi) = zi(t) − ϕT(t)β̂(t − 1, ωi)

where zi(t) = ŷi(t) in the parallel implementation, and
zi(t) = εi−1(t) in the cascade implementation.
Denote by V (t, ωi) the local exponentially weighted mea-
sure of fit

V (t, ωi) =
1
2

t∑
s=1

γt−s
i |ε(s, ωi)|2 (14)

where γi, 0 < γi < 1, is the forgetting constant, which will
be used to control the speed of the frequency adaptation. To
evaluate the estimate ω̂i(t) = arg minωi V (t, ωi) we will
use the recursive prediction error (RPE) approach – see e.g.
Söderström and Stoica [5].
Let εi(t) = ε(t, ω̂i(t)), β̂i(t) = β̂(t, ω̂i(t)), ηi(t) =
∂ε(t, ω̂i(t−1))/∂ωi, ξi(t) = ∂β̂(t, ω̂i(t))/∂ωi, and νi(t) =
V ′′(t, ω̂i(t − 1)). Using the notation introduced above, the
RPE-type frequency-adaptive EWBF algorithm can be writ-
ten down in the form

εi(t) = zi(t) − ϕT(t)β̂i(t − 1)

ηi(t) = − ϕT(t)ξi(t − 1)

νi(t) = γiνi(t − 1) + |ηi(t)|2
ω̂i(t) = ω̂i(t − 1) − ν−1

i (t)Re[εi(t)η∗
i (t)]

ρ̂i(t) = ejbωi(t)

ki(t) =
Pi(t − 1)ϕ(t)

λi + ϕH(t)Pi(t − 1)ϕ(t)

Pi(t) =
1
λi

[In − ki(t)ϕH(t)]Pi(t − 1)

β̂i(t) = ρ̂i(t)[β̂i(t − 1) + k∗
i (t)εi(t)]

ξi(t) = ρ̂i(t) [ξi(t − 1) + k∗
i (t)ηi(t)] + jβ̂i(t)

i = 1, . . . , k

θ̂(t) =
k∑

i=1

ρ̂∗i (t)β̂i(t) (15)

II - 659

➡ ➡



In the parallel realization one should set zi(t) = ŷi(t), which
leads to ε1(t) = . . . = εk(t) = y(t)−∑k

i=1 ϕT(t)β̂i(t−1)
= ε(t). In the cascade realization one should use z1(t) =
y(t) and zi(t) = εi−1(t), i > 1.
It should be noted that the proposed algorithms are novel,
both in the system case and in the signal case. The simple
gradient search algorithms, which bear some resemblance
to (15), were proposed in [1] and [2].

4. COMPUTER SIMULATIONS

The system identification/tracking results, shown in the fig-
ures 1 and 2, were obtained for a hypothetical time-varying
communication channel with two impulse response coef-
ficients θ1(t) and θ2(t) (n=2), each of which was mod-
eled as a linear combination of two complex exponentials
(k=2). The weighting coefficients in (2) had constant val-
ues α= [a11, a12, a21, a22]T= [2, 0.5j,−j, 1.5]T. The in-
put signal was the white 4-QAM sequence (u(t) = ±1± j,
σ2

u = 2) and the noise was complex Gaussian with vari-
ance σ2

v = 0.2. The forgetting constants λ1 = λ2 = λ and
γ1 = γ2 = γ were set to 0.99 and 0.98, respectively.
The simulated frequency changes were of the ramp type.
To check the ’steady state’ tracking capabilities of the com-
pared algorithms, the linear changes in frequencies were en-
forced only after the initial convergence period was over.
Since the trajectories of ω1(t) and ω2(t) intersect in the
middle of the analysis interval, one of our main concerns
was the behavior of the tracking algorithms in the vicin-
ity of the crossover point. Although both algorithms show
satisfactory tracking performance, the parallel-form adap-
tive notch filter yields consistently better results than the
cascade-form filter. This is confirmed by both the frequency
estimation plots and parameter tracking plots.
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[5] Söderström, T. and P. Stoica (1988). System Identifica-
tion. Prentice Hall. Englewood Cliffs NJ.

1000 2000 3000 4000 5000

0.1

0.12

0.14

0.16

ω
(t
)

1000 2000 3000 4000 5000

0.1

0.12

0.14

0.16

ω
(t
)

Fig. 1. Instantaneous Doppler frequencies of a simulated
mobile radio channel (solid lines) and their estimates (dot-
ted lines) obtained using the parallel-form algorithm (upper
plot) and the cascade-form algorithm (lower plot).
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Fig. 2. Evolution of the real part of the true system pa-
rameter θ2(t) (solid line) and its estimates (dotted line) ob-
tained using the parallel-form algorithm (upper plot) and the
cascade-form algorithm (lower plot).
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