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ABSTRACT

In Laguerre-based adaptive filtering, the pole can be used as an
extra degree of freedom. An optimal pole is difficult to determine
on the basis of a squared error criterion. A compaction criterion,
on the other hand, does yield a simple explicit expression for the
pole in terms of characteristics derived from the impulse response
of the system. In this paper, it is shown how these characteristics
can be calculated directly from a Laguerre expansion of the im-
pulse response. For truncated Laguerre series, this implies a much
faster algorithm than the one based on characteristics derived from
the impulse response. Such an algorithm can be used to construct
an adaptive Laguerre-based adaptive system, where the current es-
timated Laguerre expansion can be used to determine the pole in
a next step. Simulation results on the behaviour of such a system
for a synthetic signal are given in terms of signal cancellation and
convergence speed.

1. INTRODUCTION

A general scheme of adaptive filtering is depicted in Fig. 1. The
adaptive filter is shown in the dashed box and receives as input
signal x and y and produces an output signal e. Internally, the
adaptive filter consists of a filter F with adaptive filter coefficients
and a control box C which tunes the coefficients of F . The tuning
is done typically on basis of the signals x , y and e.

The signal y is assumed to consist of two components, one
correlated and the other uncorrelated with x . The correlation is as-
sumed to stem from an unknown, slowly time-varying linear sys-
tem G. The adaptive system tries to remove the correlation be-
tween x and y in as far as the modelling capabilities in F allow
this. Typically, the filter F is a tapped delay line. Other choices
are possible as well. Here we consider Laguerre-based [1] adap-
tive filtering. In that case, an extra pole appears when compared to
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Fig. 1. A general adaptive filtering (AF) scheme.

a TDL. This is an advantage because this pole can be tuned to G in
order to obtain a better compromise between the order of the filter
F and the resulting performance. The question that arises then is
whether this pole can be automatically tuned.

Tuning of the pole in a Laguerre filter has already drawn some
attention. An expression for a necessary condition for pole ac-
cording to a squared error criterion is given in [2]. Unfortunately,
this condition does not lead to an explicit expression for the pole
and, furthermore, it is order dependent. Optimisation of the pole
according to a compaction criterion was considered by several au-
thors for a real pole [3, 4, 5, 6, 7] as well as for a complex pole
[8, 9]. The benefits from this approach are that it leads to a sim-
ple and order-independent explicit expression for the pole. Appli-
cations of tuning the pole in adaptive Laguerre-based filters have
been considered in [10, 11] using a squared error criterion and [12]
using a compaction criterion.

The problem that we address is that the optimal pole accord-
ing to the compaction criterion is expressed in terms of the impulse
response. This means that the impulse response of the estimated
filter has to be determined and from that an estimate of the pole
has to be derived. Since the impulse response is a linear function
of the Laguerre expansion coefficients, it is clear that the optimal
pole can be expressed directly in the expansion coefficients. The
pertinent expressions are derived (Section 2), and have the advan-
tage that the computational costs associated with determining the
optimal pole are reduced to a large extent.

Such an approach was already followed in [12] for a real pole.
In this paper, these results are extended to cover the case of a com-
plex pole. Though it is no surprise that the results in [12] can be
extended to cover the complex pole case, the derivations proved to
be more involved than expected. In particular, where in the real
pole case the results can be derived from the orthogonality, recur-
rence relation and difference equation, we need to introduce an
additional relation (Section 2).

The behaviour of an adaptive Laguerre system including the
pole optimisation is shown by an example (Section 3) where we
consider the convergence and signal suppression. We conclude
with a discussion (Section 4).

2. FAST POLE DETERMINATION

The discrete time Laguerre functions φk(λ, n) are defined [13] by
their z-transform �k(λ, z) according to

�k(λ, z) =
√

1 − |λ|2
1 − z−1λ

{
−λ∗ + z−1

1 − z−1λ

}k

(1)
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with k ∈ �, λ ∈ � and |λ| < 1. The Laguerre functions constitute
an orthonormal set on the interval n ∈ �. The Laguerre system
can be implemented efficiently as a tapped all-pass line preceded
by the section

A0(z) =
√

1 − |λ|2
1 − z−1λ

. (2)

The allpass sections are denoted by A with

A(z) = −λ∗ + z−1

1 − z−1λ
. (3)

The Laguerre functions are closely related to the Laguerre polyno-
mials and have a number of attractive properties. From these we
mention those which will be used later. Orthonormality:

〈φk , φm 〉 = δk,m (4)

where the inner product is defined by

〈 f, g〉 =
∞∑

n=0

f (n)g∗(n). (5)

Recurrence relation:

nφk(λ, n) =λ(k + 1)

1 − |λ|2 φk+1(λ, n) + |λ|2 + k(1 + |λ|2)

1 − |λ|2 φk(λ, n)

+ λ∗k

1 − |λ|2 φk−1(λ, n). (6)

As a last property, the following identity holds:

(n + 1)φk(λ, n + 1) = (k + 1)λ2

1 − |λ|2 φk+1(λ, n)+
(2k + 1)λ

1 − |λ|2 φk(λ, n) + k

1 − |λ|2 φk−1(λ, n). (7)

The proof is given in the appendix. The Laguerre filter is defined
by

F(z) =
K∑

k=0

αk(λ)

√
1 − |λ|2

1 − z−1λ

(
−λ∗ + z−1

1 − z−1λ

)k−1

. (8)

An implementation of the Laguerre filter is depicted in Fig. 2.
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Fig. 2. The Laguerre filter consisting of pre-filter A0, a line of
allpass sections A and weights αk .

The optimal Laguerre coefficients are given by the normal
equations

Qα = P, (9)

where α = [α0, α1, · · · , αK ]t , and the matrix Q and the vector P
have entries given by

Qk,m =
∑
n

fm(n) f ∗
k (n), (10)

Pk =
∑
n

y(n) f ∗
k (n), (11)

with fk = x ∗ φk . We note that the matrix Q is a non-negative
definite Hermitian Toeplitz matrix. In view of the Toeplitz char-
acter of Q, the coefficients can be determined efficiently using the
Levinson algorithm. Other well-known adaptive techniques for the
coefficients αk include the RLS and the LMS algorithms.

Given a system G with impulse response g(n), the optimal
Laguerre pole according to a compaction criterion is given by [8]

λ̂ = β∗
(

1 −
√

1 − 1/|β|2
)

, (12)

with

β = m0/2 + m1

µ
,

m0 =
∞∑

n=0

|g(n)|2,

m1 =
∞∑

n=0

n|g(n)|2,

µ =
∞∑

n=0

(n + 1)g(n)g(n + 1) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Having solved the normal equations for a given λ, we could de-
termine the impulse response f . This impulse response is then
the best approximation we can make of the impulse response g of
the unknown system. In order to find the optimal λ for the series
expansion of g, we can calculate the optimal λ associated with f
by evaluating m0, m1 and µ. We will show that this can be done
more directly, i.e., from the (finite set of) optimal coefficients α(λ)

instead of from the (infinite long) impulse response f .
Before we give the results, we introduce some auxiliary mea-

sures

a0 =
∞∑

k=0

|αk(λ)|2, (14)

a1(λ) =
∞∑

k=0

k|αk(λ)|2, (15)

a2(λ) =
∞∑

k=0

(k + 1)αk(λ)α∗
k+1(λ). (16)

With these shorthand notations and the definitions (13), we find

m0 = a0 (17)

by using the orthonormality (4),

m1(1 − |λ|2) = |λ|2a0 + (1 + |λ|2)a1 + 2�{λa2} (18)

by using the recurrence relation (6) and, finally,

µ(1 − |λ|2) = λa0 + 2λa1 + a∗
2 + λ2a2 (19)

by using (7).
In summary, where the processing chain was formerly

αk → f (n) → {m0,m1, µ} → β → λ̂,

it is now

αk → {a0, a1, a2} → {m0, m1, µ} → β → λ̂

i.e., avoiding the infinite sequence f .
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3. EXAMPLE

As an example, we consider the situation as depicted in Fig. 1.
The input signal x consist of a complex white noise signal. The
additive noise s was set to zero. The signal G is a second-order
Butterworth filter with a time-varying centre frequency. The centre
frequency was switched at specific instances in time as illustrated
by the spectrogram of y in Fig. 3.
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Fig. 3. Spectrogram of the signal y (using overlapping windows).
The dark areas indicate the passband.

In the control box, a Hanning-windowed segment of 1024 sam-
ples (a frame) was used for calculation of the optimal filter coeffi-
cients. The hopsize between frames was taken as 256 samples, and
the number of coefficients was 10 (i.e. K = 9). For each segment,
we start with λ = 0 and three iterations to determine the optimal
pole and the associated prediction coefficients.

0 20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1

po
le

 r
ad

iu
s

0 50 100 150 200
0

2

4

6

frame index

po
le

 a
ng

le

Fig. 4. Estimated pole after the first and third iteration (dashed and
solid line, respectively) with initial pole set to 0.

In Fig. 4, the radius and angle of the pole as a function of
frame and for iteration 1 and 3 are shown. Further iterations do not
change the pole in any significant way. This means that we have
a very fast convergence. We also note that the angle of the pole
is already very accurate after the first iteration; the other iterations
mainly affect the radius.

More important than the convergence is to consider if we profit
from using an adaptive pole. The merit is illustrated by the gain
that we get where the gain is defined as the ratio between the power
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Fig. 5. Gain per frame for λ = 0 and after the first and third
iteration (dash-dotted, solid and dashed line, respectively).

of e divided by that of y per segment. From the plot in Fig. 5, we
infer that the gain for the conventional tapped-delay-line amounts
to a 1 dB signal suppression, where for the pole after 3 iterations
we have about 24 dB (except, obviously, at the transitions of G).

As a second experiment, we used the optimal pole of the pre-
vious frame as the initial pole for the current segment and deter-
mined the optimal pole and prediction coefficients by one iteration
only. The results for the pole are shown in Fig. 6 where the pole
after this single iteration is plotted as well as the pole from the
previous experiment (i.e., with pole initialisation at 0 and 3 itera-
tions). We observe that these poles are nearly identical except for
the transition regions of G. As can be expected, the pole deter-
mined in this second experiment lags slightly behind that of the
first experiment for a short period after each transition.

A similar effect can be observed when considering the gain.
We have plotted the gain per frame together with the gain from
iteration 3 in the previous experiment in Fig. 7. Since the pole is
slightly lagging behind after a transition in G, so is the gain.
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Fig. 6. Estimated pole after one iteration (solid line) when starting
from the estimated pole of the previous frame compared the the
result of iteration 3 in the previous example (dashed line).

The examples merely illustrate that a system using an adap-
tive pole can give a performance boost when compared to the tra-
ditional TDL adaptive filter and that computational costs for the
pole determination are limited and certainly weigh up against the
complexity (extra weights) needed to obtain a similar behaviour
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Fig. 7. Estimated gain after one iteration (solid line) when starting
from the estimated pole of the previous frame compared the the
result of iteration 3 in the previous example (dashed line).

with the TDL. We assume that these conclusions carry over to
other more practical control boxes, e.g., involving RLS or LMS
coefficient adaptation and an appropriately adapted procedure for
pole tuning.

4. CONCLUSIONS AND DISCUSSION

We have derived expressions for a fast pole determination in an
adaptive complex Laguerre filter. A simulation of an adaptive sys-
tem incorporating the developed algorithm indicates good cancel-
lation properties and fast adaptation.

In this paper, we addressed the complex Laguerre system. In
practice, real systems and signals are of more importance. It is
believed that, with some heuristic measures, the system can be
adapted to this situation which would in fact be equal to a heuris-
tic optimisation of the complex-conjugated pole pair in a Kautz
system [14]. A simple heuristic rule proposed already in [9] is
to apply the estimation of a complex Laguerre pole to the Hilbert
transform of the impulse response and use this pole and its com-
plex conjugate as the poles in a Kautz series. From our experi-
ences, this already works satisfactory and eliminates the necessity
of the searches as proposed in [15, 16].

Appendix
In this appendix, we give an outline how the relation (7) can be
proved. First, we transform the relation to the z-domain. The left-
hand side can then be written as

�{(n + 1)φm (λ, n + 1)} = −z2 d�m (λ, z)

dz

= −z2 Am(z)
d A0(z)

dz
− z2mA0(z)Am−1(z)

d A(z)

dz
. (20)

The righthand side can be sorted similarly in two terms as

1

1 − |λ|2 [λ�m (λ, n) + λ2�m+1(λ, z)]+
m

1 − |λ|2 [�m−1(λ, z) + 2λ�m (λ, n) + λ2�m+1(λ, z)]. (21)

Substituting the definitions of A and A0 in (20) and performing
the differentiation with respect to z followed by some rearranging,
proofs the identity of (20) and (21).
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