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ABSTRACT

The basis functions of the continuous fractional Fourier
transform (FRFT) are linear chirp signals that are suitable
for time-frequency analysis of signals with chirping time-
frequency content. Efforts to develop a discrete computable
version of the fractional Fourier transform (DFRFT) have
focussed on furnishing a orthogonal set of eigenvectors for
the DFT that serve as discrete versions of the Gauss–
Hermite functions. Analysis of the DFRFT obtained from
Grunbaum’s tridiagonal commuter and the kernel associ-
ated with it reveals the presence of both amplitude and
frequency modulation in contrast to just frequency modu-
lation seen in the continuous case. Furthermore the instan-
taneous frequency of the basis functions of the DFRFT are
sigmoidal rather than linear.

1. INTRODUCTION

The continuous–time Fractional Fourier transform of a sig-
nal x(t) is defined via the integral [4]:

Xα(t, u) = Fα(x(t)) =

∫ ∞

−∞
x(t)Kα(t, u)dt,

where the Kernel of the transform is given by:

Kα(t, u) =

√
1 − j cot α

2π
exp

(
j
t2 + u2

2
cot α − jtu csc α

)
.

The kernel of the FRFT can be expanded via Mercer’s the-
orem as:

Kα(t, u) =

∞∑
p=−∞

e−jpαHp(t)Hp(u),

where Hp(t) corresponds to the k-th order Gauss Hermite
function,

Hk(t) =
21/4

√
2kk!

e−πt2hk(t),

where hk(t) is the k-th order Hermite polynomial. The
FRFT basis functions are linear chirp signals which pro-
vides a framework for analysis of signals with linear-FM
type time-frequency content. A DFRFT preserving the ro-
tation aspect of the continuous–time FRFT was defined via

the fractional power of the DFT matrix [3]:

Aα(x) = W
2α
π (x) =

N−1∑
p=0

e−jpαvpv
H
p (x). (1)

Properties of this DFRFT were analyzed in [3], where it was
shown to be a rotation in discrete time–frequency space.
The expansion in [3], however, is based on eigenvectors of
the DFT that are linearly independent but non orthogonal
set. Specifically the DFT has 4 distinct eigenvalues and
only those that belong to distinct eigenvalues are orthogo-
nal. Since the basis functions of the continuous FRFT are
not bandlimited, directly sampling of the kernel will result
in aliasing and approaches based on oversampling will re-
sult in a non orthogonal basis [7, 9]. Recent efforts towards
finding a discrete FRFT have focussed on the problem of
furnishing orthogonal eigenvectors for the DFT, that are
discrete versions of the Hermite–Gauss functions. One of
these approaches based on the Harper matrix S has been
used for constructing a complete orthogonal set of eigenvec-
tors for DFT eigenvectors [2, 10]. Another discrete version
of the FRFT based on Kravchuk functions has been ex-
plored in [1].

The particular approach towards obtaining the DFT
eigenvectors adopted in this paper uses the tridiagonal com-
muting matrix introduced by Grunbaum [8]. The motiva-
tion behind using this approach is that it furnishes a com-
plete basis for the DFT for any N and the tridiagonal com-
muting matrix in the limit approaches the second-order dif-
ferential Hermite-Gauss operator [8]. Recently Mugler and
Clary modified the Grunbaum tridiagonal incorporating a
scaling factor and the resultant eigenvectors very closely re-
semble the Gauss-Hermite functions [5]. In this paper, we
will focus our analysis on the latter and analyze the discrete
FRFT obtained from this commutor, study the properties
of the transform and the associated basis functions. Specif-
ically we show that the basis functions contain both ampli-
tude and frequency modulation to preserve orthogonality.

2. ON THE GRUNBAUM DFRFT

The motivation behind the commutor matrix approach to-
wards finding the DFT eigenvectors lies in the fact that if
two unitary–symmetric matrices A and B commute then
they share a basis of eigenvectors. If the eigenvalues of the
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Figure 1: Eigenvectors of the Grunbaum tridiagonal commuting matrix T for N = 201, α = 22.5◦, b = 1. Note that the kth

eigenvector has k − 1 zero crossings, (b) asymptotic solution for the eigenvectors vk[n], k = 1, 2, 3, 4, 5, 6.
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Figure 2: Normalized instantaneous frequency associated with different columns of the DFRFT operator for different angles.
The IF of the DFRFT kernel is noticeably sigmoidal rather than linear.

commuting matrix B are distinct the eigenvectors of the
commutor without degeneracy furnish the sought eigenvec-
tors. The tridiagonal commutor of Grunbaum is defined via
its diagonal, off-diagonal elements [5]

Tmn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2 cos (πNτ) sin (πnτ) sin (π(N − n − 1)τ)
if m = n, 0 ≤ n ≤ N − 1,
sin (πnτ) sin (π(N − n)τ)
if m = n + 1, n − 1, 1 ≤ n ≤ N − 1,
0, otherwise

where 0 ≤ µ ≤ N − 1 and τ = 1/Nb2. Next we focus
our attention on the centered version of the DFT matrix
operator defined via [5]:

{Wa,b}mn =
1√
N

exp

(
−j

2π

N
(m − a)(n − a)/b2

)
,

where the shift parameter a = N−1
2

. Note that this cor-
responds to a shifted version of the DFT only when N is
odd. This focus is due to the fact that the eigenvalues of
the commutor matrix T for the centered DFT case are both

real and unique and furnish the complete orthogonal set of
DFT eigenvectors VG via [5]: T = VGΛGVT

G. It is also
instructive to look at some specific observations regarding
the DFRFT that arise out of this expansion in Eq. (1).
First, the DFRFT matrix operator is an involution opera-
tor of order m = floor( 2π

α
) : Am

α = I. Specifically when
α = π

2
it reduces to the DFT matrix which is m = 4-th

order involution. The involution property is derived from
the eigenvalues of the DFRFT operator and is indepen-
dent of the eigenvectors. It is also an indicator of the fact
that this operator represents a rotation in time–frequency
space. The eigenvalues of the DFRFT matrix operator are
the roots of unity and when the angle α takes on discrete
values α = 2π

N
p, p = 0, 1, . . . , N−1, the trace of the operator

vanishes at the zeroes of the Dirichlet kernel:

Trace(Aα) = DN (α) = e−jα(N−1)/2

(
sin(Nα/2)

sin (α/2)

)
. (2)

II - 642

➡ ➡



0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

TIME    SAMPLES

IN
S

T
A

N
T

A
N

E
O

U
S

  
P

H
A

S
E

 ,
  

 D
F

R
F

T
  

 C
O

L
U

M
N

S

b = 1, N = 101, α = 5°

A(:,1)
A(:,25)
A(:,50)
A(:,75)
A(:,100)
A(:,15)
A(:,90)

(a)
0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

TIME    SAMPLES

IN
S

T
A

N
T

A
N

E
O

U
S

  
P

H
A

S
E

 ,
  

 D
F

R
F

T
  

 C
O

L
U

M
N

S

b = 1, N = 101, α = 45°

A(:,1)
A(:,25)
A(:,50)
A(:,75)
A(:,100)
A(:,15)
A(:,90)

(b)
0 20 40 60 80 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

TIME    SAMPLES

IN
S

T
A

N
T

A
N

E
O

U
S

  
P

H
A

S
E

 ,
  

 D
F

R
F

T
  

 C
O

L
U

M
N

S

b = 1, N = 101, α = 85°

A(:,1)
A(:,25)
A(:,50)
A(:,75)
A(:,100)
A(:,15)
A(:,90)

(c)

Figure 3: Normalized instantaneous unwrapped phase associated with the kernel of the DFRFT based on the Grunbaum
commutor matrix.
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Figure 4: (a) Amplitude of different columns of the discrete FRFT based on the Grunbaum commutor T for N = 201, α =
22.5◦, b = 1, (b) instantaneous envelope of a fixed column for different angular parameters describing the increased spread
of the envelope with increase in the angular parameter
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Figure 5: Magnitude of the DFRFT of chirp signals with different chirp rates rc = 0.005, 0.025, 0.01 for specific angles and
transform lengths N resulting in a impulse like transform.
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When the trace of the DFRFT is actually zero, i.e., α =
αr = 2πr

N
the determinant of the DFRFT operator becomes:

det(Aα) =

N∏
p=1

exp (−jpαr) = ±1, αr =
2πr

N
(3)

This fact is important from the perspective of development
of fast algorithms for computing the DFRFT because the
DFRFT can now be interpreted as a DFT:

Xr[k] =

N−1∑
p=0

{
vkp

N−1∑
n=0

vnpx[n]

}
W pr

N , (4)

where vij refers to the (i, j)-th element of the matrix of
eigenvectors VG of the Grunbaum tridiagonal commutor.
which can be computed using the computationally efficient
FFT algorithm. The eigenvectors of the Grunbaum tridi-

agonal commutor v
(b)
k [n] for N = 201, b = 1, α = 22.5◦ are

described in Fig. (1)(a). Note that the eigenvector of order
k exhibits k−1 zero crossings as in the case of the continuous
Gauss-Hermite functions. The effect of the dilation param-
eter on the eigenvectors of T is illustrated in Fig. (1)(b) for
different values of the dilation parameter b. Note that the
dilation parameter only affects the eigenvectors and not the
eigenvalues of the DFRFT. As the dilation parameter value
increases, the spread of the eigenvector v1[n] increases. Fur-
thermore negative values of dilation parameter b produce
the same results as the corresponding positive dilation pa-

rameter, i.e., v
(b)
k [n] = v

(−b)
k [n], indicating a dependence

on just |b|. These eigenvectors v
(b)
k [n] exhibit even or odd

symmetry: v
(b)
k [n] = ±v

(b)
k [−n] depending on the order k

requiring the storage of just half of the N samples for each
eigenvector. The eigenvectors of the Grunbaum tridiago-
nal commutor in particular satisfy a second order difference
equation of the form:

bn+1v
(b)
k [n] + (an+2 − λk)v

(b)
k [n + 1] + bn+2v

(b)
k [n + 2] = 0,

where an = Tnn, 0 ≤ n ≤ N − 1 and bn = Tn,n−1, 1 ≤
n ≤ N − 1. Fig. (1)(b) describes the effect of a very large
dilation parameter b on the eigenvectors v2[n], v3[n] and
v4[n] of the Grunbaum tridiagonal commutor T. An impor-
tant observation that one derives from Fig. (1)(b) is that
in the limit of a large dilation parameter the solution to

this second-order difference equation v
(b)
k [n] approaches a

polynomial similar to the way in which the Hermite Gauss
functions asymptotically tend to Hermite polynomials:

v
(b)
k [n] = pk[n]ψ

(b)
k [n], lim

b→∞
ψ

(b)
k [n] = 1. (5)

Specifically the kernel of the DFRFT based on the Grun-
baum tridiagonal commutor contains both amplitude mod-
ulation and frequency modulation in an effort to preserve
orthogonality:

Kα[n, k] = Aα[n, k] exp (jΦα[n, k]) , (6)

where Aα[n, k] is the instantaneous envelope of the kernel
and Φα[n, k] is the instantaneous phase of the kernel. As a

consequence of this information the DFRFT can be inter-
preted as an AM–FM transform of the form:

Xα[k] =

N−1∑
n=0

Aα[n, k] exp (jΦα[n, k]) x[n] (7)

The AM and FM modulation parts in particular satisfy:

lim
α→90◦

Aα[n, k] =
1√
N

, lim
α→90◦

Φα[n, k] =
2πnk

N

lim
α→0◦

Aα[n, k] = δ[n − k].

Fig. (4)(a) describes the instantaneous envelope of the
DFRFT kernel for α = 22.5◦, b = 1, N = 201. Fig. (4)(b)
describes the instantaneous envelope of a specific column
of the DFRFT matrix for different angular parameters de-
scribing the increasing spread of the envelope from a im-
pulse to a constant. Fig. (2) describes the instantaneous
frequency of the columns of the DFRFT where we note that
the IF of the kernel is not linear as in the case of the con-
tinuous FRFT kernel but rather sigmoidal. Also note that
as the angular parameter α approaches 90◦ the IF starts to
approach a constant corresponding to the sinusoidal basis
functions of the DFT kernel.
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