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ABSTRACT

A method for detection of source signal auto-term regions in
the time-frequency plane, based on spatial time-frequency
distribution matrices is presented. As opposed to previ-
ous methods, a multiple hypothesis test is used in order to
strongly control the family wise error rate when testing mul-
tiple locations on the time-frequency plane simultaneously.
A bootstrap based method for estimating the distribution of
the test statistic is also proposed, and the performance in
terms of operating characteristics is compared to that of us-
ing an asymptotic distribution.

1. INTRODUCTION

Non-stationary signals such as frequency modulated (FM)
and polynomial phase signals (PPS) arise in a number of
fields including sonar, radar and telecommunications. Re-
cently, the application of time-frequency (TF) analysis to
sensor array processing for non-stationary signals has re-
ceived significant attention in the literature. The use of
spatial time-frequency distribution (STFD) matrices in par-
ticular has emerged as a natural means for exploiting both
the spatial diversity and TF localization properties of non-
stationary sources impinging on a sensor array.

Methods for blind source separation [1], direction-of ar-
rival estimation [2, 3] and signal synthesis [4] have been
proposed based on STFD processing. It has been shown that
the relationship between the STFD of the sensor data and
the time-frequency distributions (TFDs) of the sources is
identical to that of the sensor data covariance matrix and the
sources’ correlation matrix. This key property permits di-
rection finding and blind source separation to be performed
using the sources’ TF localization properties. In a ‘blind’
scenario, no a priori knowledge of the source TF local-
ization can be assumed and must therefore be estimated
[5, 6, 7].

This paper presents a multiple hypothesis testing (MHT)
framework for detecting the locations in the TF plane at

which source signals exhibit a significant power concentra-
tion. The MHT approach allows testing of multiple points
on the TF plane simultaneously while controlling the overall
probability of a false detection. A bootstrap based scheme
for estimating the null distribution of the test statistics is
also proposed. This potentially allows the detector to be
used in non-Gaussian, temporally correlated noise environ-
ments. Performance of the detector using both the asymp-
totic and bootstrap estimates of the null distributions is pre-
sented in terms of the operating characteristics, for a number
of signal-to-noise (SNR) values.

2. SIGNAL MODEL AND STFD MATRICES

We consider an m-element sensor array observing an in-
stantaneous linear mixture of signals emitted from d < m
narrowband far-field sources. The vector x(n) ∈ C

m×1

represents a snapshot of the baseband array output at sam-
pling instant n, which may be corrupted by an additive noise
process v(n). The baseband array output model is

x(n) = As(n) + v(n), n = 1, . . . , N (1)

where A ∈ C
m×d is termed the mixing matrix and s(n) ∈

C
d×1 is a (deterministic) vector of the source signals. A is

assumed to be of full column rank. We also assume that the
sources have different localisation properties in the TF plane
and are ‘uncorrelated’ such that

Rs
def= lim

T→∞
1
T

T−1∑
n=0

s(n)sH(n) = I. (2)

The different receive power of the source signals is assumed
in the matrix A, so that Rs may be identity without loss of
generality. The noise process is assumed to be wide-sense
stationary and independently, identically distributed at each
sensor, with variance σ2

v . In the sequel a ‘whitened’ signal
vector z(n) ∈ C

d×1 shall be considered

z(n) = Wx(n) = Us(n) + Wv(n) (3)
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where W is termed the whitening matrix which is chosen
so that U = WA is unitary. W may be estimated using
and eigen-decomposition of the sample correlation matrix,
as detailed in [8]. Having a unitary transformation of the
sources allows a test statistic for auto-terms to be computed,
which is free of cross-source terms.

The STFD matrix for a vector x(n) is defined according
to

[Dxx(n, ω;ϕ)]ij = Dxixj
(n, ω;ϕ) (4)

where Dxixj
(n, ω;ϕ) is assumed to be a bilinear TFD of

Cohen’s class, for which the kernel function is ϕ. In the
following we shall assume the use of the pseudo Wigner
Ville Distribution (PWVD) with odd window length L and
omit ϕ from the notation.

3. HYPOTHESIS TESTING

The goal of the signal detection problem, is to determine at
which points of a set, S, of TF locations

S = {ζi = (ni, ωi) : i = 1, . . . , p}, (5)

the auto-source TFDs have significant peaks. Following
the definition of a STFD matrix given in (4), we note that
the auto-source distributions lie on the diagonal entries of
the source STFD matrix. The signal detection problem can
therefore be presented under a MHT framework, with the
ith null and alternative hypothesis for each ζi, given respec-
tively by

Hi : Tr [Dss(ζi)] = 0
Ki : Tr [Dss(ζi)] > 0. (6)

From a single set of observation data, the set S may
contain some points for which the null Hi is true and points
for which it is false. If the subset of points for which Hi is
true is given by {ζi : i ∈ ΩH}, then we wish to control the
level of the test according to a null hypothesis

H =
⋂

i∈ΩH

{Hi}. (7)

Since H is a subset of the global null hypothesis
⋂

i{Hi} we
require a test procedure which strongly controls the family
wise error (FWE) rate according to

Pr [Reject H|H] = Pr [Reject any element of H|H] ≤ γ,

where γ is the set level of significance for the test. A number
of MHT procedures exist which strongly control the FWE,
such as those of Holm, Hochberg and others [9]. We make
use of Holm’s MHT procedure which is a sequentially re-
jective Bonferroni algorithm.

For testing (6) we consider the quantity Tr [Dzz(ζi)]
which has mean and variance given respectively by

µ = ‖W ‖2
σ2

v + Tr [Dss(ζi)] (8)

σ2 ≈ Lσ2
v

(
2 ‖W ‖2 +

∥∥WW H
∥∥2

σ2
v

)
. (9)

1. Randomly draw a set of data from a single sensor
(a row of the matrix X), with replacement.

2. Repeat the random selection m times to obtain a
resample of the array data matrix, X∗.

3. Compute the eigen-value decomposition of the
sample correlation matrix

R̂∗ = N−1X∗(X∗)H

and form estimates Ŵ and σ̂2
v of the whitening

transform and noise variance respectively. a

4. Substitute Ŵ and σ̂2
v into Equations (8) and (9)

to obtain µ̂ and σ̂2. Compute the test statistic T ∗
i

from Equation (10).

5. Repeat steps 1 to 4 B times to obtain the bootstrap
test statistics T ∗

i (b), b = 1, . . . , B.

aEstimation of W and σ2
v is discussed in [8].

Table 1. Bootstrap procedure for resampling non-stationary
array data.

The test statistic used in (6) at the point ζi is given by

Ti =
(
Tr

[
ŴDxx(ζi)Ŵ H

]
− µ̂

)
/σ̂ (10)

where µ̂ and σ̂ are estimates of (8) and (9) under the null,
respectively. In the general case, the distribution of the test
statistic is unknown. In the following section we propose a
bootstrap based procedure for estimating the distribution of
(10) under the null hypotheses.

4. BOOTSTRAP PROCEDURE

For each test statistic Ti defined in (10) we require the distri-
bution under the null hypothesis in order to evaluate signif-
icance levels for the MHT. As opposed to using the asymp-
totic distribution described in the previous section, we esti-
mate the null distribution using the bootstrap [10].

Due to the non-stationary nature of the source signals,
we cannot directly resample columns from the array data
matrix X = (x(1), . . . ,x(N)). However, the noise is as-
sumed to be independently identically distributed across the
sensors. We may therefore resample rows of X to gener-
ate a bootstrap data set X∗. Recalculating the test statis-
tic from X∗ according to (10) gives us T ∗

i and repeating
the procedure B times then gives T ∗

i (b), b = 1, . . . , B for
i = 1, . . . , p. The procedure is summarised in Table 1.

One must show caution in the procedure of Table 1 that
the bootstrap sample correlation matrix R̂∗ retains at least
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rank d + 1 for the estimation of the whitening transform.
This problem is less likely to occur as the ratio m/d of sen-
sors to sources becomes large. However, to ensure the rank
condition is met one can add a test for the rank of R̂∗ to the
procedure of Table 1, at step 3.

Since the null distribution of the test statistic is zero
mean, it can be approximated using the bootstrap test statis-
tics by forming T ∗

i (b) − B−1
∑B

b=1 T ∗
i (b), b = 1, . . . , B.

One can then use this distribution to determine significance
levels or p-values to be used in the multiple test. In order
to accurately estimate the tails of the null distribution one
must have a large enough number of sensors to resample
from, especially if one wishes to set a very low level of sig-
nificance for the test. Experience has shown that 30 sensors
are sufficient for significance levels of 0.05 and greater.

An advantage of the proposed resampling scheme is that
we can estimate the null distribution in the presence of tem-
porally correlated and non-Gaussian noise. The only re-
quirement is that the noise is independently distributed with
respect to the sensors. Whitening methods can be consid-
ered if this scheme is to be applied in a spatially coloured
noise environment. An obvious disadvantage of the pro-
posed scheme is increased computational burden since the
test statistic must be computed B times instead of once.

5. SIMULATIONS

The asymptotic null distribution of the test statistic is stan-
dard Gaussian [11] and this is especially close to the true
distribution when the sensor noise is Gaussian. Since the
Gaussian sensor noise case is the only case where a detec-
tor based on the test statistic (10) has been proposed in the
literature [6, 7, 11], we use this scenario to illustrate that the
bootstrap detector can achieve similar and in some cases
better performance. However, it should be remembered that
unlike the previously proposed methods, the bootstrap de-
tector is not restricted to this case of Gaussian sensor noise.

Here we present simulation results demonstrating the
performance of the MHT procedure for point selection. In
the following examples, we use a uniform linear array of
m = 32 sensors and N = 128 snapshots of data. There
are three linear FM (chirp) source signals present, having
directions of arrival (DOA) with respect to the array broad-
side given by (−3o, 0o, 3o) respectively. The noise-free sum
of the chirp source signals, Tr [Dss(n, ω)], is shown in Fig-
ure 1, where the PWVD is computed with a window length
of 33. In the following we refer to the detector based on the
bootstrap and the asymptotic distributions as D1 and D2
respectively.

To evaluate the performance of the point selection pro-
cedure, a set of 30 points from the TF plane is tested. We
choose 15 points at which there are auto-source terms, and
15 locations which are dominated by noise. For this set of
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Fig. 1. Sum of the auto-source TFDs of the three chirp
source signals.

points, we apply Holm’s sequentially rejective Bonferroni
procedure, using both the asymptotic distribution and the
bootstrap distribution of the test statistic. The number of
bootstrap replications is B = 200. Shown in Figure 2 are
the operating characteristic (OC) curves for SNRs of -9, -6
and -3 dB which plot the probability of detection versus the
probability of false alarm.

It can be seen that both D1 and D2 have similar per-
formance, and D1 slightly outperforms D2 for the middle
SNR value. The probability of detection plotted is the over-
all probability of detection, i.e. the probability of accepting
all of the true Ki’s. The individual decisions for each Ki

are actually accepted at a higher rate than that shown on the
OC.

Shown in Figure 3 is the achieved FWE rate versus the
nominal level of significance of the test. It can be seen that
D1 maintains the FWE rate at less than or equal to γ as de-
sired, while the bootstrap detector D2 deviates slightly for
small values of γ. This is due to the difficulty in accurately
estimating the tails of the null distribution when there are
a limited number of sensors from which to resample. This
problem is alleviated as the number of available sensors in-
creases.

Both D1 and D2 exhibit a significantly lower FWE rate
than the nominal level of significance for higher values of
γ which indicates that the MHT procedure is conservative.
However, for typically used values of γ (less than 0.1) this
is not a problem. It is also possible to employ a more so-
phisticated MHT procedure [12], which may yield a less
conservative test.
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6. CONCLUSIONS

The work presented in this paper demonstrates two con-
cepts. Firstly, multiple hypothesis testing procedures may
be successfully applied to TF point selection techniques to
control the FWE rate. This allows a global level of signif-
icance to be specified for testing a number of TF locations
simultaneously. Secondly, the application of a bootstrap re-
sampling scheme may be applied to the sensor array data,
in order to estimate the null distribution of the test statistic
used for point selection. This could potentially be applied
to a wide range of noise models, since few assumptions on
the noise distribution are made.
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Fig. 2. OC curves. SNR = -3 dB (∗ D1, ∨ D2), SNR = -6
dB (◦ D1, � D2), SNR = -9 dB (• D1, � D2).
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Fig. 3. FWE for (top) normal approximation and (bottom)
bootstrap based detector. SNR = -3 dB (∗), SNR = -6 dB
(◦), SNR = -9 dB(•).
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