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ABSTRACT

In this paper, the effect of three time-frequency representations on
a novel correlation algorithm is studied. By representing a signal
in the time-frequency domain, a redundant representation of the
signal is obtained. The algorithm presented herein relies on such
redundancies to extrapolate some significant features of the signal.
The developed scheme has been applied to heart sound analysis
using real recordings from patients, where the opening snap (OS)
is distinguished from the third heart sound (S3). The results for the
three time-frequency transforms are compared and very encourag-
ing results have been obtained with S-transform.

1. INTRODUCTION

Automatic recognition and pattern matching for signals with par-
ticular characteristics buried in other signals or noise can be a dif-
ficult task. If a correlation-type scheme is used, the corrupting
signals/noise will affect the accuracy of the pattern matching and
may subsequently lead to errors in the decision [1]. This is because
corrupting signals may also bear some resemblance to the template
being matched. This is particularly true if the pattern of interest is
a transient signal embedded within a non-stationary environment.
A particular application considered in this paper is the analysis of
heart sounds. Even though the correlation is a very powerful tool,
which has been used extensively in many applications [1], the po-
tential limitations with traditional time-domain correlation-based
pattern recognition methods lie in the fact that they did not fully
utilize the frequency characteristics of the template and the signal
being analyzed. It is important to point out that, if the template has
bandlimited characteristics, significant improvement in the perfor-
mance of the pattern recognition scheme can be readily made by
a relatively simple pre-processing of the signal and the template
in time-frequency domain. Such pre-processing can separate the
intertwined time and frequency domain features of the signals ef-
fectively and allow important features to be exposed in the time-
frequency domain.

A novel scheme for improving the performance of pattern recog-
nition methods of bandlimited non-stationary signals has been de-
veloped in this paper, based on time-frequency analysis tools. The
pre-processing is carried out by converting a one-dimensional (1D)
time domain signal into a two-dimensional (2D) time-frequency
representation. By doing so, the true time-frequency compositions
of the signal can be revealed clearly. Hence, it allows the pat-
tern matching to be conducted only in selected regions in the time-
frequency domain. For this reason, this newly developed technique
is referred to as Selective Regional Correlation. To emphasize
the novelty of this new method and its performance with differ-
ent time-frequency transforms, the S-Transform [2], Short-Time
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Fourier Transform (STFT) [3], and Wavelet analysis [4] have been
employed in the analysis and numerical studies.

This paper is organized as follows: The detailed time-frequency
domain pre-processing and the theoretical development of the se-
lective regional correlation are presented in Section 2. Section 3
illustrates the performance of the proposed scheme through an ap-
plication in heart sounds analysis. With this example, effects of the
three time-frequency representations on the resolution of the pat-
tern classifier are examined. The conclusions are drawn in Section
4 followed by a list of references.

2. SELECTIVE REGIONAL CORRELATION

2.1. Problem Statement

Based on the above introduction, the problem investigated in this
paper can be stated as follows:

For a given bandlimited template p(t) and the signal s(t), de-
sign a pre-processing scheme so that when s(t) contains the known
template p(t), the pre-processing increases the value of correla-
tion coefficient, otherwise decreases the value of correlation coef-
ficient.

2.2. A Time-Frequency Decomposition of the Signal and the
Template

The essence of the proposed scheme is to represent a 1D time do-
main signal in 2D time-frequency domain in order to reveal its true
characteristics for more accurate pattern matching. In principle,
any time-frequency representation method can be utilized for such
a purpose; however, due to the fact that signal decompositions are
involved, the bilinear class of time-frequency distributions, such
as Wigner distribution or Cohen’s class [5], may be more involved
for their cross products terms.

An idea behind the linear time-frequency transform is to cor-
relate or convolve a function with a waveform (sometimes called
time-frequency atoms [4]) which is well concentrated in time and
frequency.

Definition 2.1 For a waveform φτ,γ ∈ L2(R), the corresponding
time-frequency transform of function f ∈ L2(R) is defined as [4]:

Tf(τ, γ) =

∫ ∞

−∞
f(t)φτ,γ(t)dt = 〈f, φτ,γ〉 (1)

Similarly, the inverse time-frequency transform can be represented
as:

f(t) =

∫ ∞

−∞

∫ ∞

−∞
Tf(τ, γ)K(τ, γ)dτdγ (2)

where K(τ, γ) is a kernel used for the inversion.
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A short-time Fourier transform can be constructed with a finite
length window g which is translated by τ and modulated by ξ [3]
[4]:

φγ(t) = gξ,τ (t) = ejξtg(t − τ) (3)
A wavelet transform is constructed from dilation by s and transla-
tion by τ of a mother wavelet ψ [4]:

φγ(t) = ψs,τ (t) =
1√
s
ψ(

t − τ

s
) (4)

An S-Transform is constructed using a Gaussian window which is
translated by τ , dilated by f and modulated by ξ [2] [9] [10]:

φγ(t) = gξ,τ,f (t) = ejξtg(
t − τ

f
) (5)

Clearly, the S-Transform can be viewed from two different
perspectives. It can be seen as a short-time Fourier transform with
a variable window length [2], or as a special type of continuous
wavelet transform (CWT) with a Gaussian mother wavelet multi-
plied by a phase factor [2]:

STf(τ, γ) = ej2πfτCWTf (τ, γ) (6)

2.3. Selective Regional Correlation

To present the concept of selective regional correlation, let’s as-
sume that a bandlimited template and the signal being analyzed
are represented by p(t) and s(t), respectively.

Lemma 2.1 If the template is represented by p(t), its time-frequency
transform can be represented as:

Tp(τ, γ) =

∫ ∞

−∞
p(t)φτ,γ(t)dt (7)

and
Tp(τ, γ) ≡ 0 ∀ γ /∈ {γ : γ1 ≤ γ ≤ γ2} (8)

where γ1 and γ2 are the lower and upper limits of frequency band
of the template.

Lemma 2.2 If a finite duration signal being processed and its
time-frequency transform are represented by s(t) ⊆ [t1, t2] and
Ts(τ, γ), respectively, the following signal decomposition is in or-
der:

Ts(τ, γ) = Ts1(τ, γ) ∪ Ts2(τ, γ) (9)
In other words, Ts1(τ, γ) represents the portion of the signal in
the time and frequency range of the template, and Ts2(τ, γ) is its
complement, representing the remaining signal elements.

Different 2D windows can be used to effectively extract Ts1(τ, γ)
from Ts(τ, γ). However, care should be taken when extracting
Ts1(τ, γ) from Ts(τ, γ), since window functions could introduce
additional transients when returning to the time-domain.

Lemma 2.3 If a 2D window is represented in the time-frequency
domain as: W (τ, γ) ∃ ∀ τ ∈ [τ1, τ2] γ ∈ [γ1, γ2], then

Ts1(τ, γ) = Ts(τ, γ) ·W (τ, γ) τ ∈ [τ1, τ2] γ ∈ [γ1, γ2] (10)

In this paper, for the interest of reducing the edge effect, elliptic
type of window is used. A Gaussian elliptic window is a window
whose boundary is defined by an ellipse [6], while weights of the
points inside the ellipse are assigned by a Gaussian distribution.
The definition of a Gaussian elliptic window is

Wg(τ, γ) =

{
1

2πστ σγ
e
− τ2

2σ2
τ
− γ2

2σ2
γ ∃∀ τ, γ

0 otherwise

}

(11)

where the Gaussian elliptic supports the region R = {(τ, γ) : τ ∈
[τ1, τ2], γ ∈ [γ1, γ2], (τ/a)2 + (γ/b)2 = 1}, and constants
a and b represent half of the major and minor axes, respectively.
The variances in time and frequency are represented by σ2

τ and σ2
γ

respectively. They control the shape of this 2D window.

Corollary 2.1 Based on Lemma 2.2 and Lemma 2.3, the corre-
sponding time-domain signal has the following properties:

s(t) = s1(t) + s2(t) (12)∫ ∞

−∞
s1(t)s2(t)dt = 0 (13)

where s1(t) and s2(t) are the inverse time-frequency transforms
of Ts1(τ, γ) and Ts2(τ, γ), respectively.

Theorem 2.1 If the pattern similar to that of the template p(t) is
present in the signal s(t), then the following is true:

max[|corr(s1(t), p(t))|] > max[|corr(s(t), p(t))|] (14)
max[|corr(s2(t), p(t))|] < max[|corr(s(t), p(t))|] (15)

where max[|corr(x(t), y(t))|] is defined as:

max[|corr(x(t), y(t))|] = max

⎡
⎣

∣∣∣∣∣∣
∫ ∞
−∞ x(t)y(t + τ)dt√∫ ∞

−∞ x(t)2dt
√∫ ∞

−∞ y(t)2dt

∣∣∣∣∣∣
⎤
⎦

(16)

Proof: Eqn. (12) and Eqn. (13) represent the signal s(t) and its
decomposition. Assuming that s1(t) contains the pattern p(t), and
s2(t) lies in the frequency and the time bands outside those of the
pattern p(t), this means that∣∣∣∣

∫ ∞

−∞
s1(t)p(t)dt

∣∣∣∣ � 0 (17)∣∣∣∣
∫ ∞

−∞
s2(t)p(t)dt

∣∣∣∣ ≈ 0 (18)

Using Eqn. (18) and Eqn.(13), the left hand sides of Eqn. (14) and
Eqn. (15) are equal to

max

⎡
⎣

∣∣∣∣∣∣
∫ ∞
−∞ s1(t)p(t + τ)dt√∫ ∞

−∞ s1(t)2dt
√∫ ∞

−∞ p(t)2dt

∣∣∣∣∣∣
⎤
⎦ (19)

max[|corr(s2(t), p(t))|] ≈ 0 (20)

and the right hand side of Eqn. (14) and Eqn. (15) is equal to

max

⎡
⎣

∣∣∣∣∣∣
∫ ∞
−∞ s1(t)p(t + τ)dt√∫ ∞

−∞{s1(t)2 + s2(t)2}dt
√∫ ∞

−∞ p(t)2dt

∣∣∣∣∣∣
⎤
⎦ (21)

Since the denominator of Eqn. (21) is greater than the denominator
of Eqn. (19), and s1(t) and s2(t) are complements to each other,
it follows that

max[|corr(s1(t), p(t))|] > max[|corr(s(t), p(t))|] (22)
max[|corr(s2(t), p(t))|] < max[|corr(s(t), p(t))|] (23)

So far, only a binary case is dealt with. The concept of the
selective regional correlation is also valid for M-ary case, but cer-
tain precautions must be taken when selecting the templates. The
major point is that the templates must be mutually exclusive.
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Theorem 2.2 Let’s assume that p1(t)...pm(t) are the templates
with the time-frequency representation Tp1(τ, γ)...Tpm(τ, γ) re-
spectively. The selective regional correlation can then be applica-
ble in two ways:

1. Case I
If the time-frequency representations of the templates,
Tp1(τ, γ), Tp2(τ, γ)...Tpm(τ, γ) are disjoint sets, that is

Tpk(τ, γ) ∩ Tpl(τ, γ) = ∅ (24)
∀ k, l ∈ {k, l |k �= l ∧ 1 ≤ k, l ≤ m}

then a template pi(t) is simply found by multiplying a func-
tion ςi(t) (where i = 1, 2...m in each case) that contains
the desired template by a 2D window and inverting back to
the time domain:

pi(t) =

∫ ∞

−∞

∫ ∞

−∞
Tςi(τ, γ)Wi(τ, γ)K(τ, γ)dτdγ

(25)
where Tςi(τ, γ) is the time-frequency representation of ςi(t)
and Wi(τ, γ) is 2D window.

2. Case II
When the time-frequency representations of the templates,
Tp1(τ, γ), Tp2(τ, γ)...Tpm(τ, γ) are not disjoint, that is

Tpk(τ, γ) ∩ Tpl(τ, γ) �= ∅ (26)
∀ k, l ∈ {k, l |k �= l ∧ 1 ≤ k, l ≤ m}

it is necessary to introduce a mutually exclusive template
in order to reduce the highest correlation coefficient when
the template is absent. This exclusivity is introduced in the
time-frequency domain as follows:

pk(t) =

∫ ∞

−∞

∫ ∞

−∞
Pk(τ, γ)K(τ, γ)dτdγ (27)

pl(t) =

∫ ∞

−∞

∫ ∞

−∞
Pl(τ, γ)K(τ, γ)dτdγ (28)

where

Pk(τ, γ) = Tpk(τ, γ)wk(τ, γ) \ Tpl(τ, γ)wk(τ, γ) (29)
Pl(τ, γ) = Tpl(τ, γ)wk(τ, γ) \ Tpk(τ, γ)wl(τ, γ) (30)

∀ k, l ∈ {k, l |k �= l ∧ 1 ≤ k, l ≤ m}
In both cases, the selective regional correlation is defined as:

SRC(ζ) =

∫ ∞
−∞ s̃(t)pi(t + ζ)dt√∫ ∞

−∞ s̃(t)2dt
√∫ ∞

−∞ pi(t)2dt
(31)

where

s̃(t) =

∫ ∞

−∞

∫ ∞

−∞
Ts(τ, γ)W (τ, γ)K(τ, γ)dτdγ (32)

and where Ts(τ, γ) is the time-frequency transform of the signal
s(t), and pi(t) is ith template.

3. HEART SOUND CLASSIFICATION BY THE
SELECTIVE REGIONAL CORRELATION

3.1. Heart Sounds

Heart problems associated with heart valves, known as mitral steno-
sis, are caused by rheumatic heart disease which leads to narrow-
ing of mitral valve. Clinical experience has shown that heart aus-
cultation can be an effective tool to diagnose the above condition,

since it allows the detection of abnormal behavior of the heart be-
fore it can be detected with the other techniques such as ECG [7]
[8]. Heart sounds are result of sudden closure of the heart valves
during different phases of the cardiac contraction. They are non-
stationary, non-deterministic signals that carry information about
the anatomical and physiological state of the heart. Each heart beat
consists of at least the first heart sound (S1) and the second heart
sound (S2). Further, the opening snap (OS) and the third heart
sound (S3) represent two different pathological states of the heart.
Thus, they do not occur simultaneously. The OS occurs in a patient
with potential mitral stenosis and the S3 often occurs in patients
with impaired myocardial reserve [7]. However, the difficulty lies
in the fact that there are significant similarities between OS and S3
as shown in top graphs of Fig. 1 and Fig. 2, respectively. It is
generally difficult for physicians to distinguish them without spe-
cific training [7]. It will be shown in this section that the selective
regional correlation based pattern recognition techniques can im-
prove the detection of the presence or absence of these conditions
significantly.

Fig. 1. Opening snap and its time-frequency representation

Fig. 2. Third heart sound and its time-frequency representation
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Table 1. Comparison of highest correlation coefficient for selective regional correlation and general correlation
Method MATCH NO MATCH RESOLUTION RATIO
Selective Regional Correlation S-Transform 0.5248 0.1759 0.3489 2.9835

Short Time Fourier Transform 0.5972 0.2404 0.3568 2.4842
Continuous Wavelet Transform 0.7292 0.5735 0.1557 1.2715

General Correlation 0.3885 0.3575 0.0310 1.087

3.2. Numerical Analysis

Phonocardiograph recordings of actual heart sounds sampled at
4000 Hz, are obtained from patients at the St. Joseph’s Hospital
in Toronto, Canada. In order to take advantage of the fast algo-
rithms each recording is 1.024 seconds long [9]. The sampling
rate is high enough since the maximum frequency content of the
heart sounds is usually below 600 Hz [7]. These recordings have
been carefully studied by the chief cardiologist to classify them as
either containing the opening snap or the third heart sound. There
are total of nineteen signals used in our analysis. Twelve of the
signals contain the opening snap and seven contain the third heart
sound. Two of the signals were set as the templates.

In the time-frequency analysis, three different transforms are
used as outlined in the previous sections. A Gaussian window
with a length of 260 points is used for STFT. A Gaussian mother
wavelet is used for the CWT. In the calculations of the S-transform,
an original Gaussian window was used [2]. The time-frequency
representations of the OS and S3 in Fig. 1 and Fig. 2 depict
that there exist minor differences between the two signals in the
time domain. These differences can be clearly seen in the time-
frequency domain. Very often, the S1 is used as the onset of
the heart beat, and in order to detect the beginning of the S1 one
would need to use the ECG signal which has been recorded simul-
taneously [7]. The simultaneous recording of ECG and the heart
sounds can be easily performed with SimulScope III from Car-
dionics Inc. Webster, Texas, USA. If the onset of S1 is used as
the time reference, at the same rate of heart beat, the OS will be
usually ahead of S3 slightly [9]. Naturally, the selective regional
correlation can be applied to assist physicians for correct diagno-
sis.

The goals of the numerical study are to show that the selective
regional correlation improves the resolution of the classifier signif-
icantly, that is, it is sensitive to different patterns, and to show that
it is a robust technique independent of the type of time-frequency
transforms and slight variations in patterns. These objectives have
been fulfilled by comparing the results of the selective regional
correlation with general correlation. In order to do so, two states
are used: MATCH or NO MATCH. MATCH represents the situa-
tion that the signal contains the patterns as specified. NO MATCH
represents the situation where the signal does not contain the pat-
tern of the template. The performance can be seen by calculating
the differences and ratios between correlation coefficients in these
two situations.

3.3. Performance of the Selective Regional Correlation

The sensitivity of the proposed scheme has been evaluated by com-
paring it with general correlation, and the results are shown in Ta-
ble 1. From the results, it is clear that the selective regional corre-
lation performs significantly better than the general correlation.

The results clearly indicate that the selective regional correla-
tion is superior method to the general correlation. It is rather im-
portant to examine how different time-frequency transforms will
affect the resolution of the classifier when applied to the heart
sounds. The results in Table 1 confirm earlier work of [9] [10]

which have speculated that the S-transform is a better method for
the time-frequency analysis of the heart sounds than the STFT and
CWT. From the Table 1 it is clear that when the S-transform is used
the highest correlation coefficient when there is no match present
is on average one third of the highest correlation coefficient when
there is a match present. For other two time-frequency represen-
tations, this ratio is higher. However, authors would like to em-
phasize that the superior performance of the S-transform is only
confirmed for the heart sounds.

4. CONCLUSION

This paper has examined effects of the three time-frequency trans-
forms on the performance of a newly developed technique known
as the selective regional correlation, which relies on redundant
representation of a 1D signal in a 2D time-frequency domain for
both the template and the signals being processed. The resolution
of the classifier is investigated when the proposed method is ap-
plied to heart sound analysis to distinguish the opening snaps (OS)
from the third heart sound (S3). All three time-frequency methods
proved to be reliable for the selective regional correlation with the
S-transform being the best.
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