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ABSTRACT

We present a definition of a dual-frequency dual-wavenumber
cross-spectrum of two nonstationary and inhomogeneous
harmonizable random fields, which is in fact a generaliza-
tion of the Loève (dual-frequency) cross-spectrum of two
random processes. Furthermore, a geometric argument shows
that a proper normalization yields a natural measure of cross-
coherence, and application of Cauchy-Schwarz’ inequality
results in a necessary and sufficient condition for full cross-
coherence. Finally, estimators of the cross-spectrum and the
cross-coherence based on the multitaper approach are sug-
gested, and tested on simulated data.

1. INTRODUCTION

Random functions of both space and time arise naturally
in array processing applications, for instance in sonar sys-
tems. Such functions are special cases of what is generally
called random fields. Often, stationarity and homogeneity
is assumed, at least locally. Stationary and homogeneous
random fields have been extensively treated in the literature
(see e.g. [1] and references therein). However, these as-
sumptions are rather strict, and often not met in practice. In
this paper we will study the spectral properties of nonsta-
tionary and inhomogeneous random fields.

2. SPECTRAL PROPERTIES

2.1. Spectral representation of random fields

Let X(r, t) be a real valued continuous random field defined
on Rn×R, where r is an n-dimensional space variable, and
t is a time variable.

The random field X(r, t) is called harmonizable if there
exists a representation of the form [1]

X(r, t) =
∫

ej2π(qT r+ft) dmX̃(q, f), (1)

where m = n + 1, and the integration is over Rn × R.
The measure dmX̃(q, f) is the complex valued increment
field, or generalized Fourier transform, of the field X(r, t).

One could also call it the infinitesimal Fourier-generator of
the field X(r, t). Note that for notational convenience, we
have introduced the vector variable q, which is related to
the wavenumber vector k by k = 2πq.

2.2. Dual-frequency dual-wavenumber cross-spectra

Now, consider two random fields X(r, t) and Y (r, t). As-
sume temporarily that the corresponding increment fields
are orthogonal, i.e. [2]

EdmX̃∗(q − κ, f − ν)dmỸ (q, f) =
SXY (q ; f)δ(ν)δ(κ) dnqdnκdfdν, (2)

where δ(·) is Dirac’s delta function. In this case we obtain
the well known stationary and homogeneous result that the
spatio-temporal cross-correlation function EX(r, t)Y (r +
ρ, t + τ) is a function of ρ and τ only:

EX(r, t)Y (r + ρ, t + τ) = MXY (ρ, τ)

=
∫

ej2π(qT ρ+fτ)SXY (q ; f) dqdf, (3)

and we now recognize SXY (q ; f) as the ordinary frequency-
wavenumber cross-spectrum.

In general, however, the increment fields are nonorthog-
onal, i.e.

EdmX̃∗(q − κ, f − ν)dmỸ (q, f) =
SXY (κ,q; ν, f) dnqdnκdνdf, (4)

where SXY (κ,q; ν, f) is some complex valued function
of κ,q, ν and f . In this case, the spatio-temporal cross-
correlation function assumes the form

MXY (r,ρ; t, τ) � EX(r, t)Y (r + ρ, t + τ)

=
∫∫

ej2π(κT r+qT ρ+νt+fτ)

· EdmX̃∗(q − κ, f − ν)dmỸ (q, f)

(5)

which may be viewed as a spectral representation of the
cross-correlation function MXY (r,ρ; t, τ). Note that this
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is in fact a generalization of the Loève cross-spectrum [3]
of two nonstationary random processes.

Correlation among different frequency components is
responsible for nonstationarities, while correlation among
different wavenumber components results in inhomogene-
ities. Now, we may regard SXY (κ,q; ν, f) as a dual-frequen-
cy dual-wavenumber cross-spectrum. The variables q and
f are global quantities, while κ and ν are local quantities.
This choice of variables is attractive due to the fact that
stationary and homogeneous processes will have nonzero
values only on the stationary and homogeneous manifold
(κ, ν) = (0, 0), as can be seen from (2). With this par-
ticular choice of variables, the stationary and homogeneous
manifold coincides with the global coordinate axes.

2.3. Dual-frequency dual-wavenumber cross-coherence

The concept of coherence is very important in many appli-
cations. Various definitions of a quantity measuring the de-
gree of coherence can be found in the literature. The value
of such a measure should preferably be bounded between
zero and one. We will in this section derive a dual-frequency
dual-wavenumber cross-coherence function by following a
procedure analogous to the derivation of a dual-frequency
coherence function for nonstationary random processes in [4].

A meaningful way of defining a cross-coherence func-
tion of two nonstationary and inhomogeneous random fields
X(r, t) and Y (r, t) can be obtained by recognizing the fact
that the dual-frequency dual-wavenumber cross-spectrum
SXY (κ,q; ν, f) can be expressed as a Hilbert space inner
product

SXY (κ,q; ν, f)dnκdnqdνdf =〈
dmỸ (q, f), dmX̃(q − κ, f − ν)

〉
, (6)

where we have defined the Hilbert space inner product be-
tween two complex valued stochastic variables Z and W by
〈Z,W 〉 � EZW ∗. A normalized version of SXY (κ,q; ν, f)
is called for since the concept of coherence is related to the
phase of the Fourier generators dmX̃(q, f) and dmỸ (q, f),
rather than the magnitude.

Now, associated with any inner product 〈Z,W 〉, there is
an angle ψ between Z and W defined by

cos ψ =
〈Z,W 〉√〈Z,Z〉 〈W,W 〉 .

We can argue that cos ψ is a reasonable measure of coher-
ence since intuitively a high value of SXY (κ,q; ν, f) cor-
responds to high coherence, and the inner product (6) is
maximized when ψ is minimized. This justifies the follow-
ing definition of a dual-frequency dual-wavenumber cross-

coherence function

ρ2
XY (κ,q; ν, f) � cos2 ψ(κ,q; ν, f)

=

∣∣∣EdmX̃∗(q − κ, f − ν)dmỸ (q, f)
∣∣∣2

E

∣∣∣dmX̃(q − κ, f − ν)
∣∣∣2 E

∣∣∣dmỸ (q, f)
∣∣∣2

=
|SXY (κ,q; ν, f)|2

SXX(0,q − κ; 0, f − ν)SY Y (0,q; 0, f)
.

(7)

One can easily show that 0 ≤ ρ2
XY (κ,q; ν, f) ≤ 1 by em-

ploying Cauchy-Schwarz’ inequality. Furthermore, it fol-
lows that we get full cross-coherence ρ2

XY (κ,q; ν, f) = 1
if and only if

dmX̃(q − κ, f − ν) = γ dmỸ (q, f) (8)

for some γ ∈ R. Now, if we decompose the complex valued
increment fields as dmX̃(q, f) � |dmX̃(q, f)| exp{jφX(q, f)}
and dmỸ (q, f) � |dmỸ (q, f)| exp{jφY (q, f)}, respec-
tively, we arrive at the fundamental result that we have full
cross-coherence at (κ,q; ν, f) if and only if

φX(q − κ, f − ν) = φY (q, f) + kπ k ∈ Z, (9)

that is, full cross-coherence is equivalent to the random vari-
ables corresponding to the phase of the components dmX̃(q−
κ, f−ν) and dmỸ (q, f), respectively, being identical mod-
ulo π. This result is the main contribution of this work.

3. ESTIMATION OF DUAL-FREQUENCY
DUAL-WAVENUMBER CROSS-SPECTRA

In this section we will look at the special case where we
have a one-dimensional space variable r. Generalization to
two or three space dimensions is straightforward.

Assume that we have sampled the random field at spa-
tial positions m = 0, 1, . . . , Nr − 1 and temporal instants
n = 0, 1, . . . , Nt − 1. Thus, if the field is harmonizable, the
samples x[m,n] = X(m,n) have the spectral representa-
tion

x[m,n] =
∫ fN

−fN

∫ fN

−fN

ej2π(qm+fn) d2X̃(q, f), (10)

where fN = 1/2 is the Nyquist frequency.
For a given bandwidth W , it is well known that a statis-

tically stable estimate of the Loéve cross-spectrum (in the
random process case), is Thomson’s high-resolution multi-
taper estimate [5]. This estimate extends naturally to ran-
dom fields. The eigencoefficients of the high-resolution ex-
pansion in this case become [6]

x̃kr,kt(q, f) =
Nr−1∑
m=0

Nt−1∑
n=0

x[m,n]

· vkr

Nr,Wr
[m]vkt

Nt,Wt
[n]e−j2π(qm+fn) (11)
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where vk
N,W [l] is the kth discrete prolate spheroidal sequence

of length N and bandwidth W [7]. Analogous to the mul-
titaper estimate of the Loève cross-spectrum [8], we may
form an estimate of SXY (κ, q; ν, f) by averaging over prod-
ucts of the eigencoefficients x̃∗

kr,kt
(q−κ, f−ν) and ỹkr,kt

(q, f)

ŜXY (κ, q; ν, f) �

1
KrKt

Kr−1∑
kr=0

Kt−1∑
kt=0

x̃∗
kr,kt

(q − κ, f − ν)ỹkr,kt
(q, f), (12)

where Kr = �2NrWr� and Kt = �2NtWt�. Similarly, we
estimate ρ2

XY (κ, q; ν, f) by

ρ̂2
XY (κ, q; ν, f) �∣∣∣ŜXY (κ, q; ν, f)

∣∣∣2
ŜXX(q − κ, q − κ; f − ν, f − ν)ŜY Y (q, q; f, f)

. (13)

Analysis of the statistical properties of the estimators in (12)
and (13) involves generalization of the results in [9] and [5].
However this is outside the scope of the present paper. For
this work, it suffices to observe that the multitaper approach
stabilizes a naïve estimator based on (single-)tapered FFTs,
since it amounts to averaging over estimates that are statis-
tically uncorrelated due to the orthogonality of the discrete
prolate spheroidal sequences.

4. NUMERICAL SIMULATIONS

In this section, we will demonstrate some of the properties
of the dual-frequency dual-wavenumber cross-coherence by
numerical examples. For simplicity, we only consider one
spatial dimension, such that the wavenumber vector q re-
duces to a scalar q.

4.1. The stationary and homogeneous case

Stationarity and homogeneity corresponds to uncorrelated
frequency and wavenumber components. Thus, we expect
the dual-frequency dual-wavenumber cross-coherence of a
white stationary random field with itself (i.e. the auto-coh-
erence) to be exactly one on the stationary and homoge-
neous manifold (κ, ν) = (0, 0), and zero elsewhere.

Fig. 1 shows two slices in the dual-frequency direction
of the estimated dual-frequency dual-wavenumber auto-coh-
erence of a white Gaussian stationary random field with
mean value zero and unit variance. In the estimation, we
have used sample sizes Nr = 16 and Nt = 128, and time-
bandwidth products NrWr = 3 and NtWt = 10, respec-
tively. In the left panel, where κ �= 0, the estimated auto-
coherence is close to zero for all frequency pairs (ν, f), with
a maximum value of 0.07. The true value is exactly zero for
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Fig. 1. Slices in the dual-frequency direction of the es-
timated dual-frequency dual-wavenumber auto-coherence

ρ̂2
XX(κ, q; ν, f) of a white Gaussian stationary random

field. Left panel: q = −0.25 and κ = −0.6875. Right
panel: q = −0.25 and κ = 0.

all (ν, f). In the right panel, on the other hand, where κ = 0,
we get an estimated auto-coherence equal to one along the
line ν = 0, which is the part of the slice that resides in the
stationary and homogeneous manifold. Elsewhere, the esti-
mated auto-coherence is close to zero, which is as expected
from Eq. (2).

4.2. The nonstationary and inhomogeneous case

We have shown that nonstationarities and inhomogeneities
manifest themselves as nonzero dual-frequency dual-wave-
number cross-coherence outside the stationary and homo-
geneous manifold, where (κ, ν) �= (0, 0). To demonstrate
this effect, let us assume that a chirp-like acoustic signal

X(r, t) = cos(2πβt2), (14)

where r = 0, 1, . . . , Nr − 1 and t = 0, 1, . . . , Nt − 1, is
transmitted through a body of water. The signal is reflected,
and arrives at a hydrophone array with some nonzero inci-
dent angle. The received signal can then be modeled as

Y (r, t) = X(r, t − τ(r)) + N(r, t), (15)

where τ(r) is the delay with respect to the transmitted signal
at the hydrophone in position r, and N(r, t) is some noise
field. In Figure 2, we show the estimated dual-frequency
dual-wavenumber cross-coherence between X(r, t) and Y (r, t)
for β = 0.25/Nt. The noise field N(r, t) is a zero mean sta-
tionary Gaussian field with variance 0.1, and we have used
sample sizes Nr = 8 and Nt = 256, and time-bandwidth
products of NrWr = 3 and NtWt = 4. The hydrophone
array is assumed to be linear, such that τ(r + 1) − τ(r) =
∆τ = 2 ∀r.

Fig. 2 shows four slices in the dual-frequency direction
of the estimated dual-frequency dual-wavenumber cross-coh-
erence of X(r, t) and Y (r, t) in (14) and (15). Notice that in
all four slices, we get significantly nonzero estimated cross-
coherence around two points on the line ν = 0, and around
two points on the line ν = 2f . From this figure, we may
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Fig. 2. Slices in the dual-frequency direction of the es-
timated dual-frequency dual-wavenumber cross-coherence

ρ̂2
XY (κ, q; ν, f) of X(r, t) and Y (r, t) in (14) and (15),

respectively. Top left: q = −0.125 and κ = −0.375.
Top right: q = −0.125 and κ = −0.25. Bottom left:
q = −0.125 and κ = −0.125. Bottom right: q = −0.125
and κ = 0.

observe two important facts. Firstly, all four slices con-
tain non-zero values. If the process had been homogeneous,
only the bottom right slice, where κ = 0, would have con-
tained non-zero values. Thus, we may conclude that the
process is inhomogeneous. Secondly, all slices have non-
zero values outside the line ν = 0. This means that the
process is nonstationary. Thus, we have demonstrated the
effect that nonstationarities and inhomogeneities manifest
themselves as nonzero values outside of the stationary and
homogeneous manifold. Further analysis of this particular
example is outside the scope of this paper.

5. CONCLUSIONS

We have in this paper defined a dual-frequency dual-wave-
number cross-spectrum of two nonstationary and inhomo-
geneous random fields, which is a generalization of the Loève
cross-spectrum of two nonstationary random processes.

Interpreting the cross-spectrum as a Hilbert space in-
ner product between the increment fields, or infinitesimal
Fourier generators, of the two random fields yielded a proper
normalization of the cross-spectrum. This normalization
was then interpreted as a measure of cross-coherence.

We have in this paper shown that a necessary and suf-
ficient condition for full dual-frequency dual-wavenumber
cross-coherence between two random fields at given frequen-
cy-wavenumber pairs, is that the random variables corre-
sponding to the phase of the increment fields at the respec-

tive frequency-wavenumber pairs are identical. This result
yields fundamental insight into the nature of the concept of
coherence, which intuitively is connected to the covariation
of the phase of two harmonic signals.

Finally, based on Thomson’s multitaper approach, we
have suggested and implemented estimators for the proposed
cross-spectra and cross-coherence. Numerical examples dem-
onstrated that nonstationarities and inhomogeneities show
up as nonzero values of the dual-frequency dual-wavenumber
cross-coherence outside of the stationary and homogeneous
manifold. Thus, the suggested coherence measure provides
valuable insight into systems that are inherently nonstation-
ary and inhomogeneous, including linear time-variant and
dispersive systems commonly encountered in array process-
ing applications.

6. REFERENCES

[1] A. M. Yaglom, Correlation theory of stationary and
related random functions I — Basic results, Springer-
Verlag, 1987.

[2] J. F. Böhme, “Array processing,” in Advances in spec-
trum analysis and array processing, S. Haykin, Ed.,
vol. II, chapter 1, pp. 1–63. Prentice Hall, 1991.

[3] M. Loève, Probability theory, Van Nostrand, 1963.

[4] A. Hanssen and L. L. Scharf, “A theory of polyspectra
for nonstationary stochastic processes,” IEEE Trans.
Signal Processing, vol. 51, no. 5, pp. 1243, May 2003.

[5] D. J. Thomson, “Spectrum estimation and harmonic
analysis,” Proceedings of the IEEE, vol. 70, no. 9, Sept.
1982.

[6] A. Hanssen, “Multidimensional multitaper spectral es-
timation,” Signal Processing, vol. 58, pp. 327–332, Feb.
1997.

[7] D. Slepian, “Prolate spheroidal wave functions, Fourier
analysis and uncertainty — V: the discrete case,” Bell
Syst. Tech. J., vol. 57, pp. 1371–1429, 1978.

[8] D. Thomson, “Multitaper analysis of nonstationary and
nonlinear time series data,” in Nonlinear and non-
stationary signal processing, W. Fitzgerald, R. Smith,
A. Walden, and P. Young, Eds., chapter 11, pp. 317–
394. Cambridge University Press, 2000.

[9] G. C. Carter, “Coherence and time delay estimation,”
Proc. IEEE, vol. 75, no. 2, pp. 236–255, Feb. 1987.

II - 628

➡ ➠


