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ABSTRACT

We develop new algorithms, which address the problems
of accurate frequency estimation and the comparison of
the frequency content of two different spectra. We apply
these algorithms to speech to accurately estimate formants
from very little data and to estimate the frequency dif-
ferences of individual formants of similar vowel instances.
The first algorithm a simple method for construction of a
very high-resolution, high-gain spectrum. This phase-re-
parameterized spectrum is based on a deterministic signal
model and uses both Fourier phase and magnitude and ac-
counts for all of the energy in the Fourier spectrum. To
compare the formants of similar vowels we introduce a spec-
tral correlation algorithm based on an outer product rather
than the inner product of conventional correlation.

1. INTRODUCTION

Since the classical paper by Peterson and Barney [1], there
have been many studies of the formant structures of pho-
netically similar sounds spoken by different speakers. Ex-
amples of these studies are the validation of the Peterson
and Barney experiment by Hillenbrand, et al [2] and the
estimation of the speech scale of Umesh et al, in which they
estimate a spectral warping function, under which the spec-
tra of similar vowels spoken by different speakers differ by
essentially a translation [3, 4, 5]. All of these processes, to
date, have required the use of skilled humans to estimate
the formant frequencies and align the spectra for compari-
son.

We develop methods which may be used to accurately
estimate formant frequencies of individual vowels and to ac-
curately estimate the frequency differences of formants of
similar vowels spoken by different speakers. These meth-
ods are simple, accurate and may be easily automated. We
base these methods on previously reported results (c.f. [6]).
The basis of these methods is a phase differentiation of the
Fourier spectrum, which was used in the early 1980’s in a
variety of signal processing algorithms and was published as
the cross-power-spectrum (CPS) [7, 8]. In adapting these
methods to speech formant estimation, a deterministic res-
onance model is used and a cross-spectral representation
is computed from very short frames of data (typically 3 -
5 ms). The ability to accurately estimate spectral compo-
nents from such short frames makes these methods ideal for
processing non-stationary signals, such as speech. A com-
prehensive explanation of the cross-spectral process and the
deterministic resonance model is presented in a paper pub-
lished in JASA [6].

To construct an accurate and very high gain spectral
representation, we apply the re-mapping proposed by Nel-
son (c.f. [6]) and then uniformly re-sample the resulting
spectrum. We call the resulting spectral representation
a phase-re-parameterized (PR) spectrum. This process is
very efficient and accounts for all of the energy in the Fourier
spectrum. While we demonstrate this method on the esti-
mation of the formants of near steady state vowels, these
methods have been successfully applied to the general prob-
lems of formant estimation and tracking, the estimation of
the excitation fundamental F0 of speech and a variety of
speech and communication problems.

As an application of the PR spectrum, we address the
problem of estimating the frequency differences of the for-
mants of two similar vowels. In this application, a cor-
relation function based on an outer product is proposed.
In this process, an outer product of the PR spectra of the
two vowels is computed and the frequency differences of the
formants are computed from the argument or angle of the
resulting product. This provides an accurate comparison
of individual formants, in contrast to conventional correla-
tion methods which can only provide an ensemble frequency
difference estimate.

In the implementation presented here, we process 3 ms
Hanning windowed frames of vowels from Hillenbrandt’s
Western Michigan data consisting of 139 speakers, each
saying 12 vowels in an hVd context [9]. This short frame
length was used to insure that there were no pitch artifacts
[6]. In addition, a pitch-synchronization process was used
to select frames centered approximately 5 ms after glottal
closure. This synchronization process is fully automated
and is based on the phase-based resonance and excitation
indicators proposed by Nelson [6].

2. THE SIGNAL MODEL AND THE
CROSS-SPECTRAL REPRESENTATION

We base our spectral estimation and correlation meth-
ods on a signal model as the sum of a sparse set of AM/FM
modulated analytic components

f(t) =
∑
n

fn(t) =
∑
n

an(t)e
iφn(t), (1)

where the instantaneous frequency of the nth component is
ωn(t) = (d/dt)φn(t).

1 The model represented by Eq. (1)

1We stress that that instantaneous frequency of signal com-
ponents is not the same as frequency in the Fourier sense. It is
based on a model in which the analytic signal is distributed. This
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is a deterministic signal model, in which each signal com-
ponent has a well defined amplitude and frequency at each
time. We further assume that the frequencies, ωn(t), of the
signal components change very slowly with time, while the
AM components, an(t), are more rapidly changing. This is
consistent with a speech resonance model in which the for-
mants (vocal tract resonances) change as the position of the
tongue and configuration of the vocal tract change, while
the AM modulation reflects changes in energy during a glot-
tal excitation cycle. While there is a significant change in
energy during the glottal excitation cycle, the configura-
tion of the vocal tract may be assumed to change very little
over one cycle. If the analysis interval is less than the period
of an excitation cycle, there can be no observed excitation
harmonics. By assuming that instantaneous frequencies are
slowly varying, we reduce the problem from time-frequency
analysis to an analysis of frequency alone. Furthermore,
the methods we present here generalize to non-stationary
components. For a full discussion of this and the absence
of excitation harmonics, c.f.[6].

We start with the short time Fourier transform (STFT)
[10]

F(ω, T ) =

∫ ∞

−∞
f(t+ T )w(t)e−iωtdt, (2)

where w(t) is an analysis window, assumed to be short. For
the examples presented here, a Hanning window of length
3 to 5 milliseconds was used. The dependence of F(ω, T )
on w(t) is assumed, but is omitted from the notation for
simplicity. A cross-spectrum is then computed as the prod-
uct of the STFT and the complex conjugate of the STFT of
the signal delayed in time (typically by one sample). The
argument of the cross-spectrum is essentially the derivative,
with respect to time, of the phase of the STFT.

The channelized instantaneous frequency (CIF) is de-
fined as

CIFf (ω, T ) =
∂

∂T
arg{F(ω, T )} (3)

It is convenient to encode the CIF as the phase of a complex
valued surface

Cf (ω, T ) = Af (ω, T )e
iCIFf (ω,T ) (4)

where it is understood that these functions depend onA(ω, T )
We assume 0 ≤ ω ≤ π and Af (ω, T ) is a real function,

which is normally related to the magnitude of F(ω, T ). For
the speech applications presented here, we have used

Af (ω, T ) = max(0, 20 log10
|F(ω, T )|

M
+ τ), (5)

where M is the global absolute maximum of F(ω, T ) for the
speech utterance, and τ is a threshold, dependent on SNR,
which is normally set at 50 dB.

Note that there are two frequency representations en-
coded in Eq. (4). The observed frequency is ω. For an
observation made at (ω0, T0), the estimated instantaneous
signal frequency is arg{Cf (ω0, T0)} (c.f.[6]).

The cross-spectral representation, is based on a distri-
bution of the analytic signal, and not energy, in time and
frequency. For deterministic narrowband FM components,

concept is not the same as the conventional notion of frequency
as an energy distribution.

Fig. 1. Pitch synchronous spectra. Log power
spectrum (solid line) and resonance indicator
weighted log power spectrum with CIF as abscissa.
Synchronization based on resonance indicator [6].

as we have modeled them, the frequency of each component
is a well defined function of time. If the signal components
are isolated in time-frequency, each observed spectral com-
ponent, F(ω0, T0), represents an observation of one signal
component, as it exists at one instant in time. The actual
time and frequency instants of the signal component may
not be the same as the time and frequency at which the
observation is made. By assuming that the actual location
of the signal component is consistent with the CIF we may
significantly improve the accuracy of the estimated signal
frequency (c.f.[6]). This principle is the basis of spectral
estimation techniques, such as the instantaneous frequency
[11], Kay’s method [12], the cross-power spectrum [7, 8].

It should be noted that, in the examples presented here,
we have employed a pitch synchronization process. Each
spectrum displayed was computed from a single 3 ms to 5
ms frame centered approximately 4 ms after glottal closure.
The synchronization process is fully automated and is based
on the phase-based excitation and resonance indicator sur-
faces proposed by Nelson [6]. To estimate time of glottal
closure and maximal resonance, the indicator surfaces are
simply averaged with respect to frequency.

3. RE-PARAMETERIZATION BY PHASE

In representation Eq. (4), the index frequency, ω, and the
instantaneous frequency representations are not in agree-
ment with each other, in the sense that they indicate differ-
ent frequencies. We would like to compute a single spectrum
in which both frequency representations are in agreement.
Since the signal frequency is assumed to be best approx-
imated by the CIF, it is that representation we wish to
preserve.

As noted, Cf (ω, T ) is assumed to have the angular
instantaneous frequency estimates of a narrowband signal
component encoded in its argument. In Eq. (4), ω repre-
sents a parameterization of the angular Fourier frequency,
and the argument, CIFf (ω, T ), represents the instanta-

II - 622

➡ ➡



Fig. 2. A single male vowel AE, re-parameterized
by phase and the average of 45 similar male vowels
re-parameterized by phase

Fig. 3. The CIF for vowels AE, spoken by 45 adult
male speakers. The nominal frequency of each first
formant has been translated to zero for illustration.
Each step represents one formant.

neous angular signal frequency. CIFf (ω, T0) is a nonlin-
ear, non-monotonic function of ω, which may be expected
to cluster near frequencies {ωn(T0)} of the narrowband sig-
nal components at time T0 (where we have ignored the ef-
fects of group delay for simplicity). We would like to re-
parameterize the frequency axis of the surface so that the
representation is linear in instantaneous frequency. Inver-
sion is not possible, since CIFf (ω, T0) is not assumed to be
monotonic in ω. We can, however, accumulate the surface
values which assume each value of CIFf (ω, T0).

Pf (Φ, T0) =
∑

ω∈ωΦ

Cf (ω, T0)

1 + |dCIFf (ω, T0)/dω| , (6)

where ωΦ = {ω|CIFf (ω, T0) = Φ}. For values ofCIFf (ω, T0),
which are not observed, we assign a phase value equal to
ω and a very small amplitude value approximately equal to
the minimum positive number supported by the machine

precision. The factor in the denominator of Eq. (6) is a
correction needed to preserve energy due to the spectral
warping in the representation. In Eq. (6) we have used the
summation notation since the we expect ωΦ to be sparse. A
typical example of re-parameterization by phase is depicted
in Fig. 2. The basis for the processing gain for formant
estimation is the experimentally derived observation that
CIFf (ω, T0) is nearly constant for all values of ω within
the same formant band. This observation is depicted in
Fig. 3, The fact that the CIF is nearly constant across each
formant band is an indication that the deterministic signal
model is valid for speech.

The concept of re-parameterizing by phase is not a con-
volution or smoothing in the normal sense. In smoothing,
the value of the output is computed as the weighted average
of the function evaluated in a neighborhood of a point. In
re-parameterizing, we do not consider neighboring points.
We merely ask where the point re-maps under the CIF, and
we add its contribution to that new location. This phase-
re-parameterized (PR) spectral representation produces ex-
tremely narrow, high-gain formant representations from as
little as 3 ms of data.

4. OUTER PRODUCT AND CORRELATION

Our purpose in developing the PR spectrum was to ac-
curately estimate formant frequencies. We now turn our
attention to the problem of estimating the frequency dif-
ferences of individual formants of similar vowels spoken by
different speakers. To accomplish this, we introduce a cor-
relation function based on an outer product, in contrast to
the normal cross-correlation function, which is computed as
the dot or inner product of the two spectra at a sequence of
frequency lags. The normal cross-correlation function may
produce an estimate of the frequency lag for which the two
spectra are best aligned, but it is an ensemble estimate,
which provides no information about the lags which best
align the individual spectral (formant) components.

It may be argued that we could simply estimate the nth

formants of the two vowels and compute their frequency dif-
ference by subtracting their frequencies. This would work,
if there are no missing formants and no spurious spectral
components. In this case, the formants may not be correctly
identified. We therefore propose the following correlation
method.

For two PR spectral surfaces, Pf0(ω, T0) andPf1(ζ, T0),
we may define their outer product at time T0 as the surface

OPf0f1(ω, ζ, T0) = Pf0(ω, T0)P
∗
f1(ζ, T0). (7)

The outer product represents the entire correlation prop-
erties of the spectra F0(ω, T0) and F1(ζ, T0). The conven-
tional frequency-lag correlation function may be obtained
by integrating OPf0f1(ω, ζ, T0) along diagonals

Rf0f1(τ, T0) =

∫
ω−ζ=τ

OPf0,f1(ω, ζ, T0) (8)

If the magnitude of the outer product Eq. (7) is large for
some ω0 and ζ0, the magnitudes of both Pf0(ω0, T0) and
Pf1(ζ0, T0) must be large. In this case, we may conclude
that arg{OPf0f1(ω0, ζ0, T0)} represents a valid frequency
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difference of signal components of f0 and f1, observed at
(ω0, T0) and (ζ0, T0) respectively. If the PR spectra are
impulsive (sparse), OPf0f1(ω, ζ, T0) is impulsive.

Finally, we may compute a single frequency-lag cor-
relation function by re-parameterizing the outer product,
OPf0f1(ω, ζ, T0) by phase. Under this operation, outer
product components with similar phase are added, as in
Eq. (6) to produce a single frequency-lag outer-product
based correlation function. The resulting complex-valued
correlation function is convolved with at smoothing win-
dowed. Since each complex correlation component retains
knowledge of the frequency difference it represents, the re-
sulting smoothed PR correlation function effectively aver-
ages the contributions of formant pairs, whose offsets are
approximately the same. This smoothed correlation func-
tion, depicted in the bottom trace of Fig. 4, has similar
properties to the conventional correlation function, but it
is phase based and impulsive, producing much more accu-
rate frequency lag estimates and much higher gain than the
conventional correlation function.

5. CONCLUSIONS

We have presented new spectral analysis and correlation
techniques which provide greatly improved gain and accu-
racy over conventional methods. These algorithms have
been fully automated and applied to the problem of re-
solving and estimating speech formants. In addition, these
methods provide the capability to easily estimate accurate
frequency differences of corresponding formants of similar
vowels spoken by different speakers.
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