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ABSTRACT
Time-frequency analysis is a major tool in representing the energy
distribution of time-varying signals. There has been a lot of re-
search on various properties of these representations. However,
there is a general lack of quantitative analysis in describing the
amount of information encoded into a time-frequency distribution.
Recently, entropy based measures have been applied to the time-
frequency plane to quantify the information content of signals.
This paper aims to extend this approach to include other informa-
tion theoretic measures such as the divergence measures to quan-
tify how time-frequency distributions discriminate signals in an in-
formation theoretic framework. Different distance measures, such
as Kullback-Leibler distance, Rényi distance, and Jensen differ-
ence based measures will be adapted to the time-frequency plane.
The robustness of different distance measures under an additive
perturbation model will be derived. The performance of different
distance measures in quantifying the differences in information be-
tween signals will be demonstrated. Finally, the proposed distance
measures will be applied on a set of event related brain potentials
to discriminate different subject groups.

1. INTRODUCTION

Time-frequency distributions (TFDs) are used for representing the
energy distribution of time-varying signals simultaneously in time
and frequency. Despite their wide use in areas such as detection
and classification of signals, their capacity in representing infor-
mation has not been evaluated quantitatively. This paper aims at
addressing this issue by using information-theoretic distance mea-
sures.

Distance measures between statistical models have been wide-
ly used in signal processing applications. Using entropy based dis-
tance functionals is a well-known discrimination method in signal
processing. These functionals are known as divergence measures
and are applied directly on statistical models describing the sig-
nals. Measures of divergence between two probability distribu-
tions are used to associate, cluster, classify, compress, and restore
signals, images and patterns, in many applications. Many different
measures of divergence have been constructed and characterized
[1, 2].

Recently, there has been interest in applying information mea-
sures such as entropy on time-frequency representations to mea-
sure the signal complexity [3, 4]. This approach has been useful
in quantifying the information content of time-varying signals. In
this paper, we will extend this approach further so that the dif-
ference between signals can be quantified in an information theo-
retic sense. We will adopt some well-known divergence measures

from probability theory and define them for time-frequency distri-
butions. The major properties of these distance measures will be
discussed and their robustness against possible perturbations to the
signal model will be analyzed.

In Section 2, some well-known information-theoretic distance
measures will be reviewed and defined for time-frequency distri-
butions. A local curvature analysis for the divergence measures
will be introduced to determine the robustness of a given diver-
gence measure. Section 3 will present results that illustrate the
performance of different divergence measures under an additive
perturbation model. These results will be compared to the theo-
retical ones derived in Section 2. An application of the proposed
distance measures in classifying a set of event related brain po-
tentials will also be presented. Finally, Section 4 will discuss the
major contributions of the paper and suggest some applications of
the proposed method.

2. INFORMATION THEORETIC DISTANCE MEASURES
ON THE TIME-FREQUENCY PLANE

A time-frequency distribution, C(t, f), from Cohen’s class can be
expressed as 1 [5]:

C(t, f) =

∫ ∫ ∫
φ(θ, τ)s(u+

τ

2
)s∗(u− τ

2
)ej(θu−θt−2πτf)du dθ dτ

(1)

where the function φ(θ, τ) is the kernel function and s is the sig-
nal. The kernel completely determines the properties of its corre-
sponding TFD. Some of the most desired properties of TFDs are
the energy preservation and the marginals. They are given as fol-
lows and are satisfied when φ(θ, 0) = φ(0, τ) = 1 ∀τ, θ.

∫ ∫
C(t, f) dt df =

∫
|s(t)|2 dt =

∫
|S(f)|2 df∫

C(t, f) df = |s(t)|2 ,

∫
C(t, f) dt = |S(f)|2.

(2)

The formulas given above evoke an analogy between a TFD and
the probability density function (pdf) of a two-dimensional random
variable. Entropy is the measure of information for a given proba-
bility density function. Similarly, one can apply entropy and other
information theoretic measures to time-frequency distributions to

1All integrals are from −∞ to ∞ unless otherwise stated.

II - 6170-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



quantify the information of a signal. The main difference between
TFDs and pdfs is that TFDs are not always positive. Therefore,
in this paper the analysis focuses on spectrograms since they are
always positive. Another important point is that distributions have
to be normalized by their energy before applying any information
theoretic measures on them.

2.1. Distance Measures

The most general class of distance measures is known as Csiszar’s
f-divergence which includes some well-known measures like Hel-
linger distance, Kullback-Leibler divergence and Rényi divergence
[2]. The divergence between two probability density functions, p1

and p2 for this class of distance measures can be expressed as:

d(p1, p2) = g

[
E1

[
f

(
p2

p1

)]]
, (3)

where f is a continuous convex function, g is an increasing func-
tion and E1 is the expectation operator with respect to p1. The
distance measures and their properties for time-frequency distri-
butions are given below.

1. Kullback-Leibler divergence: The most common distance
measure used for probability distributions is the Kullback-
Leibler divergence measure. This measure can be adapted
to the time-frequency distributions as follows:

K(C1, C2) =

∫ ∫
C1(t, f) log

C1(t, f)

C2(t, f)
dt df. (4)

This measure belongs to the class of Csiszar’s f-divergence
with f(x) = − log x, and g(x) = x. 0 ≤ K(C1, C2) ≤
∞, the first equality holds if and only if C1 = C2 and the
second equality holds if and only if Supp C1

⋂
Supp =

∅. This is not a symmetric distance measure but can easily
be symmetrized by taking the average of K(C1, C2) and
K(C2, C1).

2. Rényi Divergence: Rényi divergence is a generalized for-
mulation of Kullback-Leibler divergence and can be ex-
pressed as:

Dα(C1, C2) =
1

α − 1
log

∫ ∫
Cα

1 (t, f)C1−α
2 (t, f)dt df.

(5)
where α ∈ [0, 1] is the order of Rényi divergence. This
measure converges to Kullback-Leibler distance as α → 1.
It is also a member of Csiszar’s f-divergence with f(x) =
x1−α, and g(x) = 1

α−1
log(x). 0 ≤ Dα(C1, C2) ≤ ∞,

the first equality holds if and only if C1 = C2 and the sec-
ond if and only if Supp C1

⋂
Supp C2 = ∅.

3. Jensen-Shannon Divergence: One common approach for
constructing divergence measures is to apply Jensen inequal-
ity on the entropy functional. For time-frequency distribu-
tions, Jensen-Shannon divergence can be defined as:

J(C1, C2) = H
(

C1 + C2

2

)
− H(C1) + H(C2)

2
. (6)

This distance measure is always positive since

H
(

C1 + C2

2

)
≥ H(C1)

2
+

H(C2)

2
(7)

by concavity of H . It is equal to zero when C1 = C2 and
is a symmetric divergence measure. Unlike the Kullback-
Leibler divergence, Jensen-Shannon distance does not di-
verge when the two distributions are disjoint.

4. Jensen-Rényi Divergence: The Rényi entropy is derived
from the same set of axioms as the Shannon entropy, the
only difference being the employment of a more general ex-
ponential mean instead of the arithmetic mean in the deriva-
tion. This realization inspires the modification of Jensen-
Shannon divergence from an arithmetic to a geometric mean,
and the following quantity is obtained for two positive TFDs
C1 and C2.

J1(C1, C2) = Hα(
√

C1C2)− Hα(C1) + Hα(C2)

2
, (8)

where (
√

C1C2)(t, f) =
√

C1(t, f)C2(t, f). This quan-
tity is obviously null when C1 = C2. The positivity of this
quantity can be proven using the Cauchy-Schwartz inequal-
ity.

∣∣∣∣
∫ ∫

[C1(t, f)C2(t, f)]α/2 dt df

∣∣∣∣
2

≤∫ ∫
Cα

1 (t, f)dt df

∫ ∫
Cα

2 (t, f) dt df, (9)

and since the log function is monotonically increasing, for
α > 1

1
1−α

log

∣∣∣∣
∫ ∫

[C1(t, f)C2(t, f)]α/2 dt df

∣∣∣∣
2

≥

1
1−α

[
log

∫ ∫
Cα

1 (t, f) dt df + log

∫ ∫
Cα

2 (t, f) dt df

]
.

(10)

Thus Hα(
√

C1C2) ≥ Hα(C1)+Hα(C2)
2

, which proves that
the distance measure is always positive.

2.2. Sensitivity Analysis

In order to investigate the effectiveness of a given divergence mea-
sure, we carry out a sensitivity analysis using the local curvature
approach [6]. The local curvature can be interpreted as the instan-
taneous acceleration of the divergence measure when it takes off
from zero as one signal starts to depart from the other. It can also
be used as a measure of robustness for a given distance.

Under an additive perturbation model such as s(t) = (1 −
ε)x(t) + εg(t), where ε ∈ [0, 1] controls the amount of perturba-
tion and g(t) is the actual perturbation, we can compute the local
sensitivity or the robustness of the distance measures as:

∂2

∂ε2
D(Cxx(t, f), Css(t, f)) |ε=0

(11)

where D(·, ·) is an information theoretic distance measure, Cxx(t, f)
and Css(t, f) are the time-frequency distributions of the original
and the perturbed signals respectively. Under an additive pertur-
bation model, s(t) = (1 − ε)x(t) + εg(t), where ε ∈ [0, 1], the
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spectrogram of s(t) will be the sum of the individual spectrograms
and the cross-spectrogram as follows:

Css(t, f) = (1−ε)2Cxx(t, f)+2(1−ε)Cxg(t, f)+ε2Cgg(t, f),
(12)

where Cxg(t, f) will refer to the real part of the cross-terms be-
tween x(t) and g(t). In this section, the local curvature of the dis-
tance measures will be formulated under this perturbation model.

• The sensitivity of the Kullback-Leibler divergence measure
can be computed as follows:

∂2

∂ε2
K(Cxx(t, f), Css(t, f)) |ε=0

= −4

∫ ∫
Cxg(t, f) dt df + 4

∫ ∫
C2

xg(t, f)

Cxx(t, f)
dt df.

(13)

As it can be seen from this equation, the robustness of the
divergence measure depends on the energy of the cross-
term, and the energy of the ratio of the cross-term to the
original signal. In order to increase robustness of the dis-

tance measure, we need to minimize 4
∫ ∫ C2

xg(t,f)

Cxx(t,f)
dt df ,

since in general
∫ ∫

Cxg(t, f)dt df is negligible for nor-
malized signals. Minimizing this quantity corresponds to
minimizing the cross-terms which agrees with our intuition
of reducing cross-terms for better discrimination between
signals. This energy can be minimized by using reduced
interference distributions. The robustness of the distance
measure will also improve when Cgg(t, f), the TFD of the
perturbation signal, is well separated from Cxx(t, f), the
TFD of the original signal, on the time-frequency plane.

• For the Rényi divergence, the same measure can be com-
puted as follows:

∂2

∂ε2
Dα(Cxx(t, f), Css(t, f))|ε=0

=
∂2

∂ε2

[
1

α − 1
log2

∫ ∫
Cα

xx(t, f)C1−α
ss (t, f)dt df

]
ε=0

= 4α

∫ ∫
C2

xg(t, f)

Cxx(t, f)
dt df − 4

∫ ∫
Cxg(t, f) dt df

+ 4(1 − α)

(∫ ∫
Cxg(t, f) dt df

)2

(14)

where α is the order of the Rényi divergence. As α → 1,
the above expression becomes equal to

−4

∫ ∫
Cxg(t, f)dt df + 4

∫ ∫
C2

xg(t, f)

Cxx(t, f)
dt df, (15)

which is the same as the sensitivity of Kullback-Leibler
measure. This is an expected result since Kullback-Leibler
distance measure is a special case of Rényi distance as α →
1. In general, the cross-terms oscillate between positive and
negative values, thus one can show that,∫ ∫

C2
xg(t, f) dt df >

(∫ ∫
Cxg(t, f) dt df

)2

.

(16)

Therefore, the dominant term in Rényi divergence will be

4α
∫ ∫ C2

xg(t,f)

Cxx(t,f)
dt df . For 0 < α < 1, the dominant

term in Rényi divergence is less than the dominant term in
Kullback-Leibler divergence. Therefore, Rényi divergence
will be more robust compared to Kullback-Leibler diver-
gence.

• For the Jensen-Shannon divergence, the local sensitivity un-
der an additive perturbation model can be computed as:

∂2

∂ε2
JS(Cxx(t, f), Css(t, f))|ε=0

= 1 − 2

∫ ∫
Cxg(t, f)dt df +

∫ ∫
C2

xg(t, f)

Cxx(t, f)
dt df.

(17)

This result is comparable to the sensitivity of Kullback-

Leibler measure. Depending on the magnitude of
∫ ∫ C2

xg

Cxx
dtdf ,

Jensen-Shannon divergence may be more or less robust than
Kullback-Leibler distance.

• For Jensen-Rényi divergence, the local curvature under the
additive perturbation model will depend on α as follows:

∂2

∂ε2
JR(Cxx(t, f), Css(t, f))|ε=0

=
α2

α − 1

[∫ ∫
Cα

xx + Cα−2
xx C2

xg − 2Cα−1
xx Cxgdt df∫ ∫

Cα
xx(t, f)dt df

]

+
α2

α − 1

[(∫ ∫
−Cα

xx + Cα−1
xx Cxgdt df

)2(∫ ∫
Cα

xx(t, f)dt df
)2

]
, (18)

where α > 1.

3. RESULTS

In this section, the robustness of the different distance measures
introduced above will be computed for an example signal both the-
oretically and experimentally.
Example 1: In this example, the change in the information-theoretic
distance as the signal is perturbed will be explored. The original
signal is a gabor logon, x(t) = exp(−(t − t0)

2) exp(−jω0t),
centered at time t0 = 32, normalized frequency ω0 = 0.2, and
the perturbation signal is another gabor logon, g(t) = exp(−(t −
t1)

2) exp(−jω0t), centered at t1 = 64, ω0 = 0.2. The perturbed
signal is s(t) = (1 − ε)x(t) + εg(t), where ε ∈ [0, 1]. The
distance between the time-frequency distributions of the perturbed
signal and the original one is computed as ε goes from 0 to 1.

Figure 1 shows the comparison between the Kullback-Leibler
and the Rényi divergences for different values of α. As α → 1,
Rényi divergence gets closer to the Kullback-Leibler divergence
as expected. The local curvature is computed for these distance
measures theoretically and experimentally by computing the sec-
ond derivative of the curve at ε = 0. The results are summarized
in Table 1. The theoretical and experimental results are close to
each other. The deviations between the two are due to the fact that
computing the local curvature from the experimental data depends
on fitting a polynomial which is prone to error. It can be seen that
as α decreases, the distance measure becomes more robust and we
get smaller curvature values.

Figure 2 shows a similar comparison between the Jensen-
Shannon and the Jensen-Rényi divergences for different values of

II - 619

➡ ➡



Order of Rényi Entropy Simulation Theoretical
1 2.4428 2.8854
0.9 2.3162 2.5969
0.5 1.7458 1.4427
0.2 1.0496 0.5771

Table 1. Local curvature of Rényi divergence for different α
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Fig. 1. Kullback-Leibler and Rényi divergence for α =
0.2, 0.5, 0.9

α. The theoretical values of the local curvature for these distance
measures are given in Table 2. For these distance measures, since
the distance versus ε curves are flat close to ε = 0, it is hard to fit
polynomials accurately. Therefore, only the theoretical curvature
values are presented.

Divergence Measure Local Curvature
JS 1.7214
JR(2) 1.4395
JR(3) 1.6212
JR(4) 1.9174

Table 2. Local curvature of Jensen-Shannon (JS) and Jensen-
Rényi (JR) divergences for different α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

No
rm

ali
ze

d 
Di

sta
nc

e

Jensen−Shannon
Jensen−Renyi,α=2
Jensen−Renyi,α=3
Jensen−Renyi,α=4

Fig. 2. Jensen-Shannon and Jensen-Rényi divergence α = 2, 3, 4

Example 2: In this example, an application of distance measures
for distinguishing between brain responses will be presented. The
event-related potentials are collected during an experiment that
aims at differentiating between the responses of two different groups
of subjects, spider phobics and non-phobics, to subliminal pre-
sentations of spider stimulus. For purposes of comparison, event-
related potentials were collected at two electrodes: Oz and Cz. The
major phenomena that need to be investigated are the difference in
responses for the two groups, the phobics and non-phobics, and
the difference in responses at different electrodes. For each sub-
ject and each trial the time-frequency distribution of both the pre-
and post-stimulus regions are computed. The distance between
the pre-stimulus and the post-stimulus is obtained by applying the
distance measure on the average time-frequency surface. A two-

way analysis of variance (ANOVA) is used to explore the inter-
actions between the two factors, i.e. the electrode and the phobic
group. We are especially interested in the interaction between the
phobia group and the electrode since that will give us information
about how phobic stimulus is processed by different subjects at
different parts of the brain. For this purpose, Jensen-Rényi dis-
tance with α = 3 is used since it is a symmetric distance mea-
sure and has been shown to be robust. Using this distance mea-
sure, we observe a significant effect for the interaction between
the phobia group and the electrode at the 5% significance level
(F (1, 14) = 8.073, p = 0.013, η2 = 0.366).

4. CONCLUSIONS

In this paper, the idea of discriminating probability models using
divergence measures is extended to the time-frequency plane. Dis-
tance measures are defined for quantifying the difference between
two signals on the time-frequency plane. The robustness of these
measures is evaluated by performing a local curvature analysis un-
der an additive perturbation model. It is observed that for all of the
distance measures introduced in this paper robustness is inversely
proportional to the energy of the cross-terms between the original
signal and the perturbation. Therefore, using TFDs that minimize
the energy of the cross-terms will increase the robustness of the
distance measures. It is also observed that in general Rényi en-
tropy based divergence measures are more robust than Shannon
entropy based ones. The proposed distance measures are applied
on an example signal under perturbation and the local curvature
computed directly from the distance graphs are shown to agree
with the theoretical ones. The distance measures are also shown to
be effective in classifying event related brain potentials.

The distance measures introduced in this paper focused on
positive distributions such as the spectrogram. However, most bi-
linear time-frequency distributions belonging to Cohen’s class are
non-positive. In that case, the divergence measures will not be
well-defined. Therefore, the distance measures introduced here
should be modified to account for the negativity in the distribu-
tions. The results presented here can also be extended for different
perturbation models such as a multiplicative one.
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