
ROBUST POLYNOMIAL WIGNER-VILLE DISTRIBUTION FOR THE ANALYSIS OF
POLYNOMIAL PHASE SIGNALS IN α-STABLE NOISE

Mounir DJEDDI, Messaoud BENIDIR

Laboratoire des signaux et systèmes (L2S)
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ABSTRACT

The polynomial Wigner-Ville Distribution (PWVD) is the most
suitable Time-Frequency Representation (TFR) of non-stationary
signals which can be modelled by polynomial phase signals. It
is a very efficient signal analysis tool both in the case of additive
and multiplicative Gaussian noise. However in many real life ap-
plications, noise can be non Gaussian. Hence the PWVD fails to
produce satisfactory results. On the other hand, it is well known
that Fractional Lower-Order Statistics (FLOS) are signal process-
ing tools that tend to resist outliers observed in signals. In this
paper, we propose a new robust FLOS-based Polynomial Wigner-
Ville Distribution which we call the Fractional Lower-Order Poly-
nomial Wigner-Ville Distibution (FLOPWVD). The latter is able
to reveal the instantaneous frequency of the high order polynomial
phase signal (PPS) in the presence of impulsive noise modelled
by α-stable distribution. This new Time-Frequency Distribution
outperforms the standard PWVD as will be shown in simulation
results.

1. INTRODUCTION

In many fields of engineering such as radar, sonar and telecommu-
nications, the signals processed at the transmitter/receiver are non
stationary and can be modelled by constant amplitude polynomial
phase signal (PPS) with constant or slowly time-varying ampli-
tude [1]. In the case of PPS having polynomials of degree less or
equal to 2, the Wigner-Ville Distribution (WVD) and its smoothed
variants provide the optimal energy concentration about the in-
stantaneous frequency (IF) in the time-frequency plane. How-
ever, when the polynomial phase signals have a degree higher than
2, the WVD does not give optimal energy concentration result-
ing in a smeared spectral representation [2]. Hence, in order to
deal with this limitation, The Polynomial Wigner-Ville Distribu-
tion (PWVD) has been proposed as an adequate Time-frequency
distribution for PPS with degree higher than 2 yielding an optimal
energy concentration around the IF [2].
In practice, the signal under consideration may be subjected to ad-
ditive noise which is generally assumed to be Gaussian. Several
papers have considered this case as in [3, 4, 5]. However, the
assumption of Gaussianity is not valid in some other situations
such as those involving atmospheric or underwater acoustic noise
which displays impulsive characteristics [6] with heavy-tailed dis-
tributions that degrade significantly the signal representation in the
time-frequency plane. Impulsive noise can be modelled by α-
stable random process. The fact that α-stable random variables
with α < 2 have infinite second moment means that many tech-

niques based on the Gaussian case will not apply, and therefore,
we must consider other alternatives to mitigate the consequence of
the non-Gaussian noise on the time-frequency distribution.
In this paper, we extend the work proposed in [7] to address the
problem of the time-frequency representation of polynomial phase
signals corrupted by additive impulsive noise using Fractional Lower-
Order Statistics (FLOS) introduced in [8] which handle robustly
the presence of heavy-tailed noise in the data.
This paper is organized as follows. In section 2, we briefly re-
view the different Time-Frequency Distributions (TFD’s) related
to analysis of polynomial phase signals. Then in sections 3 and 4,
we examine the impulsive noise, its characteristics and effect on
TFD’s respectively. In section 5, we discuss the different TFD’s
proposed for non-stationary signals corrupted by additive impul-
sive noise. And we propose a new Fractional Lower Order based
Polynomial Wigner-Ville Distribution (FLOPWVD) for PPS sig-
nals of order greater or equal to 2. Some simulation examples are
presented in section 6. And concluding remarks are given in Sec-
tion 7.

2. THE POLYNOMIAL PHASE WIGNER-VILLE
DISTRIBUTION

The constant amplitude polynomial phase signal of order p is given
by

z(t) = A exp {jφ(t)} = exp

{
j

p∑
i=0

ait
i

}
(1)

where A is the amplitude of the signal, the ai’s (i = 0, . . . , p) are
real coefficients, and t ∈ [0, T ].
The instantaneous frequency (IF) of the signal given in (1) is de-
fined as

fi(t) =
1

2π

dφ(t)

dt
=

1

2π

p∑
i=1

i ai ti−1. (2)

It has been shown that for polynomial phase signals of order p ≤
2 the WVD has the optimal energy concentration on the time-
frequency plane [9]. However when the order p is greater than 2
the WVD exhibits artifacts that alter the IF estimation. In order to
effectively overcome this limitation, the polynomial Wigner-Ville
distribution for a signal x(t) has been defined by [2]

W q
x (t, f) =

∫ ∞

−∞
Kq

x(t, τ) e−j2πfτdτ (3)
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where the kernel Kq,x(t, τ) is defined as

Kq
x(t, τ) =

q/2∏
k=0

[x(t + tkτ)]γk [x∗(t + t−kτ)]−γ−k (4)

where q is an even integer which corresponds to the order the
PWVD with (q � p). The procedure to compute the coefficients tk

and γk for a fixed value of p and q is outlined in [10], [2], and [11].
The PWVD transforms the polynomial phase signal into sinusoids
which exhibit delta functions around the signal IF when fourier
transformed. The WVD is a special case of the PWVD which can
be obtained when the parameter q = 2, t0 = 0, t1 = −t−1 = 1/2,
γ0 = 0, and γ1 = −γ−1 = 1. Note that the realness of the PWVD
implies that tk = −tk. A numerical example given in [11], pro-
poses a sixth-order PWVD kernel yielding artifact-free represen-
tation with a small order of interpolation.

3. α STABLE NOISE DISTRIBUTIONS

There exists many physical processes generating interference con-
taining noise components that are impulsive in nature (e.g., at-
mospheric noise in radio links; and radar reflections from ocean
waves [6], and reflections from large, flat surfaces including build-
ings and vehicles). The amplitude distributions of such returns are
not Gaussian, and tend to produce large-amplitude excursions and
occasional bursts of outlying observations. A variety of impulsive
noise models can be found in literature. The most commonly used
so far is the Middleton’s model [12]. Recently, a more flexible
model has been suggested for impulsive noise known as the α-
stable modelling whose distribution is defined by its characteristic
function [8]

Ψ(t) = exp{jµt − γ |t|α [1 + jβsign(t)κ(t, α)]} (5)

where

κ(t, α) =

{
tan απ

2
, α �= 1

2
π

ln |t|, α = 1

The stable distribution is completely characterized by the param-
eters α (0 < α ≤ 2) named the characteristic exponent, β: the
symmetry parameter (the distribution is symmetric α-stable SαS
when β = 0 as shown in figure 1), γ is the dispersion (γ > 0),
and µ is the location parameter (−∞ < µ < ∞). The characteris-
tic exponent determines the shape of the distribution. The smaller
α is, the heavier the tails of the alpha stable density. We should
also note that for α = 2 the distribution coincides with the Gaus-
sian density. The dispersion parameter γ determines the spread of
the distribution around its location parameter µ in the same way
that the variance of a Gaussian distribution determines the spread
around the mean [8]. For α-stable processes only the moments of
order m < α exist. The variance of α-stable random variables is
infinite for α < 2, and the mean becomes infinite when α < 1.
Hence, estimation methods based on second order statistics of the
data cannot be applied.

4. EFFECT OF IMPULSIVE NOISE ON
TIME-FREQUENCY REPRESENTATIONS

Let us consider the noisy signal x(t) given by

x(t) = z(t) + ν(t) (6)
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Fig. 1. Symmetric α-stable PDFs with µ = 0, γ = 1, β = 0 and
different characteristic exponents

where z(t) is a polynomial phase signal defined in (1) and ν(t)
is an SαS noise. The impulsive noise profoundly degrades TFRs,
although the type of degradation is dependent on the type of TFRs
being used. Additive as well as multiplicative Gaussian noise in-
fluence on the Time-frequency distributions has been considered
in literature by many authors such as in [3],[4], [5]. However, it
is common for these standard distributions (WVD, PWVD,...) to
produce poor results in an impulsive noise environment as shown
in figure 2.

5. THE FRACTIONAL LOWER-ORDER POLYNOMIAL
WIGNER-VILLE DISTRIBUTION

In order to overcome the problem of unbounded moments of sig-
nals in the presence of α-stable noise, the authors in [13] intro-
duced the Fractional Lower Order Covariance (FLOC) as a new
measure of similarity (or difference) of two α-stable processes.
The FLOC is defined by

FLOCa
x(t, τ) = E{x〈a〉(t + τ/2) x−〈a〉(t − τ/2)} (7)

The FLOC has finite mean and variance when 0 < a < α/2,
and (·)〈a〉 is the called the ath-order phased fractional lower-order
moment (PFLOM) operator defined as [14]

x〈a〉 = |x|a+1/x∗ with 0 ≤ a ≤ 1 (8)

x−〈a〉 � (x∗)〈a〉 = (x〈a〉)∗ (9)

By using equation (7), the authors in [7] defined the Fractional
Lower-order Wigner-Ville Distribution (FLOWVD) given by

W 〈a〉
x (t, f) =

∫ ∞

−∞
x〈a〉(t + τ/2) x−〈a〉(t − τ/2) e−j2πfτdτ

(10)
The fact that FLOWVD is a quadratic TFD, it inherits the same
limitations of the WVD in the case of polynomial phase signals
of order p > 2 as discussed in section 2. Figure 5 shows the
FLOWVD for PPS of degree p = 3 in α-stable noise with α = 1.
We propose the Fractional Lower-Order Polynomial WVD (FLOP-
WVD) to process polynomial phase signals of order p > 2 which
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Fig. 2. The effect of α-stable additive noise with different distri-
butions on the spectrogram and Wigner-Ville Distribution

is the generalization of the FLOWVD for non-stationary signals
corrupted by alpha stable noise.
Let us, consider the noisy signal x(t) defined in (6). We define the
FLOPWVD as

W q,〈a〉
x (t, f) =

∫ ∞

−∞
Kq,〈a〉

x (t, τ)e−j2πfτdτ (11)

where the kernel Kg
x(t, τ) is given by

Kq,〈a〉
x (t, τ) =

q/2∏
k=0

[x〈a〉(t + tkτ)]γk [x−〈a〉(t + t−kτ)]−γ−k

(12)
where x〈a〉 is defined in (8)-(9), and both parameters tk, γk are
obtained in the same way as for the standard PWVD.
The value of the parameter a has to taken such that 0 < a < α/2,
the optimal value is an open field for research. In the following
section, we will assess the performance of the FLOPWVD with
respect to the standard PWVD and the FLOWVD for the case of a
polynomial phase signal of order p = 3.

6. SIMULATION RESULTS

In this section, the performance gain when using fractional lower
order statistics based PWVD is shown. In our simulation as men-
tioned in section 2, we used the sixth order PWVD kernel given in
[11]

K6
x(t, f) = [x(t + 0.62τ)x∗(t − 0.62τ)]

×[x(t + 0.75τ)x∗(t − 0.75τ)]

×[x(t − 0.87τ)x∗(t + 0.87τ)]. (13)
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Fig. 3. Time history of (a): a PPS of order p = 3, (b): the same
signal corrupted by impulsive noise

The used noiseless signal is a PPS of order p = 3 given by z(t) =

2ej2π(a0+a1t+a2t2+a3t3), where the signal’s phase coefficients are
given by a0 = 0, a1 = 0.1, a2 = 0, and a3 = 2.44 · 10−5.
We consider a symmetric alpha stable noise SαS (β = 0) with
different values of the α parameter. The noisy signal is sampled at
T = 1 and the number of observations N is chosen equal to 128.
The time history of the noiseless and noisy signal respectively are
shown in Figure 3.
The first step is to present the PWVD applied to an impulsive noise
corrupted signal as shown in Figure 4 where one observes its limi-
tation. Now, by using the Fractional Lower-Order Kernel as given
below

K6,〈a〉
x (t, f) = [x〈a〉(t + 0.62τ)x−〈a〉(t − 0.62τ)]

×[x〈a〉(t + 0.75τ)x−〈a〉(t − 0.75τ)]

×[x〈a〉(t − 0.87τ)x−〈a〉(t + 0.87τ)]. (14)

We display in figure 6 the result when the new robust polyno-
mial Wigner-Ville distribution is applied to the signal corrupted
by Cauchy noise (α = 1). Figure 7 shows the FLOPWVD in the
case of a signal corrupted by symmetric α-stable noise (β = 0)
with α = 0.5. In both cases we took a = 0.1 and γ = 0.2. From
figures 6 and 7, one can observe clearly that FLOPWVD performs
better than the standard PWVD as well as the FLOWVD.
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Fig. 4. PWVD of the noisy signal with α = 0.5
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Fig. 5. The FLOWVD of the noisy signal with α = 1
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Fig. 6. FLOPWVD with α = 1
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Fig. 7. FLOPWVD with α = 0.5

7. CONCLUSION

In this paper, we have discussed the effect of additive heavy-tailed
noise on the performance of different time-frequency distributions.
In particular, we investigated the influence of impulsive noise mod-
elled by α-stable distributions on the WVD and PWVD in the case
of polynomial phase signals. The α-stable noise degrades badly
the TFDs as shown in simulations. By taking advantage of Frac-
tional Lower-Order Statistics that are known to be robust to im-
pulsive noise robustness, we proposed as an extension to previous
works a new Polynomial Wigner-Ville Distribution based on frac-
tional lower order statistics (FLOPWVD) for the representation of
the IF of a polynomial FM signal of order > 2 embedded in α-
stable noise. From simulations, we observed that the approaches
considered in this paper performed significantly better than the
standard PWVD.
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