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ABSTRACT

Given the importance of direct sequence spread spectrum (DSSS)
communications, the modeling of its transmission channel is of
great interest. Due to multipath and Doppler effects in the trans-
mission channel, the transmitted signal is spreaded in both time
and frequency. Transmission channels that spread the message in
time and frequency are modeled as random, time-varying systems.
It is shown in this paper that the estimation of the parameters of
such models is possible by means of the spreading function which
is related to the time-varying frequency response of the system
and the associated evolutionary kernel of the DSSS signal. Apply-
ing the time-frequency or frequency-frequency discrete evolution-
ary transforms, we show how to compute the spreading function
from the received DSSS signal. The procedure is efficiently imple-
mented with the discrete evolutionary transform. Once the number
of paths, delays, Doppler frequencies and gains characterizing the
channel are found we use this information to obtain an estimate
of the pseudo-noise and a decision parameter to determine the bit
sent. Our procedure is illustrated with simulations of the process,
and the corresponding bit-error rate.

1. INTRODUCTION

Direct sequence spread spectrum (DSSS) communications pro-
vides a very efficient use of the spectrum. It has advantages such
as code division multiple access (CDMA), low probability of in-
tercept, and robustness to intentional jamming or interference from
other users [1]. This is achieved by spreading the message so that it
ocuppies a bandwidth in excess of the minimum needed for trans-
mission. Despreading at the receiver with a synchronized replica
of the spreading sequence permits not only recovery of the mes-
sage but reduction of interferences added in the transmission. Due
to multipath and Doppler effects in the transmission channel, the
transmitted signal is further spreaded in both time and frequency
[1, 2]. The transmission channel is thus commonly modeled as
a random, time-varying linear system [3, 4, 5]. For each bit, the
channel can be characterized by a number of paths with delays,
Doppler frequencies and attenuation factors. Signal fading caused
by the channel limits the performance of DSSS. The RAKE re-
ceiver used in CDMA works well in the case of slow fading, when
the channel characteristics vary slowly with time, and avoids the
channel estimation but at the cost of performance.

The time-varying frequency response of the channel, also known
as Zadeh’s function [6], is connected with the spreading func-
tion which provides a characterization of the channel in terms of
number of paths, time delays, Doppler frequencies and gains, all
of which vary randomly. The existing connection between the

Zadeh’s function and the evolutionary spectral theory can thus be
exploited to obtain a characterization of the channel, and to pro-
vide a way in the receiver to detect the bit that was sent. When
transmitting the ��� data bit using DSSS, the received baseband
signal is given by

����� � ���� � ����� � � � � �� � ��� (1)

The interference signal
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Fig. 1. Transmission channel with multi-path and Doppler effects

noise ����� from the transmission media. The signal ���� is the
transmitted data bit 
� � �� multiplied by ����, the pseudo-
noise sequence with� chips, and affected by multipath delays and
frequency shifts due to Doppler effects. Characterizing the channel
as a linear time-varying system with impulse response ���	 
�, we
can express ���� as

���� �
�

�

���	 
����� 
�	

where ���� � 
����.
The impulse response of the system can change either bit by

bit –fast fading– or slowly corresponding to slow fading. Typi-
cally, the impulse response is considered separable:

���	 
� �

����

���

����� 
������	 (2)

where ����� is the impulse response of the all-pass systems, cor-
responding to delays ����, and ����� � ���

���� where ����
are the Doppler frequencies with gains ���� shown in Fig.1. The
���� gains are inversely related to the delays, thus a path � with
small delay will have an �	 close to unity, and a path �with a large
delay will have a �
 close to zero.
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The spreading function ���� �� provides the spreading in the
time and frequency produced by the channel [7, 5], and is con-
nected with the time-varying impulse response ���� ��, the Zadeh’s
frequency response���� �� and the bifrequency function���� ��
as indicated in Fig. 2. We will show that the discrete evolution-
ary transform, in the time-frequency or frequency-frequency do-
mains [8], can be used to characterize the channel by means of the
spreading function.

TV impulse response

TV frequency
response

Bifrequency function

Spreading
function

kk

nnkk

nn

Fig. 2. Relation of different functions

2. CHANNEL MODELING AND THE SPREADING
FUNCTION

Consider the LTV model for the channel for the transmission of
one bit, which without loss of generality we assume to be � � �
so that 	��� � 
���. The signal ����, as indicated above, is then
given by

���� �

����

���

��
���
���
����� (3)

for the case of � paths. For each bit, we characterize the channel
by the number of paths, the delays, the Doppler frequencies and
the attenuation factors. These parameters change, at every bit or
set of bits, at random within specified limits.

To obtain the spreading function consider first the computation
of the Zadeh frequency response function of the LTV system. This
can be obtained using the linearity of the system, so that if the
pseudo-noise sequence 
��� is represented as


��� �
�
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� �

��

� ����������

then we have that when we replace 
��� in (3) we get

���� �
�
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����
���
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����

� �
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� ��������������� (4)

and that the equivalent response to 
���, as an infinite sum of ex-
ponentials, is

���� �
�

��

� �

��

� ���������������� (5)

where���� �� is the frequency response of the LTV system. Thus,
comparing the above two equations, the Zadeh function is given by

���� �� �

����
���

���
���������� � (6)

which can be easily verified to be the Fourier transform of the sep-
arable impulse response ���� ��.

Now, the bifrequency function���� �� is found by computing
the Fourier transform of ���� �� with respect to the � variable:

���� �� � ��
����
���

���
�����Æ��� ���� (7)

�� � �� � � �. Finding the inverse Fourier transform of���� ��
with respect to � we have that the spreading function is given by

���� �� � ��
����
���

��Æ��� ���Æ�� �
��� (8)

which displays peaks located at the delays and the corresponding
Doppler frequencies, and with ���� as their amplitudes. If we
extract this information from the received signal, we should then
be able to figure out what the sent bit � was. We will now con-
sider the computation of the spreading function by means of the
evolutionary transformation of the received signal.

2.1. The Discrete Evolutionary Transformation

Considering ���� a non-stationary signal of length 
 , it can be
represented in terms of a time-varying kernel � ��� ��� or its cor-
responding bifrequency kernel � ��	� ���. The time-frequency
discrete evolutionary transform (DET) and it inverse are given by

� ��� ��� �
�



����������������
� (9)
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where ������� is a window that can be obtained from the Gabor
or the Malvar representation of ���� [8], and �� � ����
 , � �
� � 
��. Computing the discrete Fourier transform with respect
to � of � ��� 	�� we obtain the frequency-frequency DET and its
inverse as

� ��	� ��� �
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The Zadeh function and the corresponding spreading function
are obtained from the evolutionary kernel of ���� as follows. Ac-
cording to equation (4), the discrete representation of ���� (ob-
tained by representing 
��� by its discrete Fourier transform) is

���� �
�
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where � ��� ��� �
�

� ����� ��� is the time-frequency evolution-
ary kernel of ����, and

����� ��� �
�
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Using this we have that according to equation (6) the Zadeh
function can be expressed in terms of the evolutionary kernel as

���� ��� �
�

� ���

����

���

����� ���

�
�� ��� ���

� ���
�

The discrete Fourier transform of���� ���with respect to � gives
the bifrequency function

	���� ��� �
�� ���� ���

� ���
�

using the frequency-frequency evolutionary kernel � ���� ���. Fi-
nally, the inverse discrete Fourier transform of the above bifre-
quency function gives us the spreading function 
������.

To compute the discrete evolutionary kernel from the received
signal, we need to consider what would be an appropriate function
�������. First, suppose there is no noise in the received signal, so
that 
��� � ����. To find the time-frequency evolutionary kernel
� ��� ��� we replace ����, equation (10), to get

����

���
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The Gabor and Malvar windows do not work well in this case.
We consider � 


� ����� � ��	������ which depends on the Doppler
frequency �
. This function will give us the correct representation
of � ��� ��� only when �
 � ��, in fact, the last sum in the above
representation using � �

� ����� gives

�
�	��

����

����

�
� ��
�

������ � �
�	���� �������� ���

where the function ��� � �� is a very good approximation of a
delta function Æ��� ��. Using it, we have finally

� ���

�

����

���

��� ����
��	�������� � � ��� ����� �����

which is the expected result multiplied by����. If the frequency
in � ��� does not coincide with one of the Doppler frequencies the
result is completely different from the expected result.

Given that the Doppler frequencies are not known, to imple-
ment the computation of � ��� ���, and then the spreading func-
tion, we consider � 


� ����� � ���������, � � �
 � �. When
�
 coincides with one of the Doppler frequencies the spreading
function displays a large peak at the corresponding delay and Doppler
frequency. For those frequencies �
 not equal to the Doppler fre-
quencies the spreading function displays a random sequence of
peaks spread over all possible delays. It is possible to determine a
threshold that permit us to obtain the most significant peaks of the
spreading function corresponding to possible delays and Doppler
frequencies.

Finally, the attenuation values can be estimated by consid-
ering the spreading function corresponding to the corresponding

Doppler frequency. For instance, when there is a unique Doppler
frequency �� , the spreading function as computed using the evo-
lutionary transform will be of the form


����� �� � �� ���������� ������ ���� (11)

so that finding its peak and dividing by the factor���� provides
�� . For the noisy case, the above computations will be affected by
the noise but in general they can be done in a similar way.

2.2. Bit detection using the channel characterization

The spreading function provides a way to characterize the changes
in the channel, bit by bit, and can be used to determine what the
value of the sent bit was. Since we know the pseudo-noise se-
quence ����, we would like to obtain the signal component that
has the smallest delay and the largest gain � to determine the value
of �. That is, the signal


���� � 
����

����

���

������� �����
� �	�

� ��
���� �����
� �	�� � ����

where ���� contains the original noise ���� as well as the errors
caused by the estimates of the parameters of the channel. Demodu-
lating 
���� by multiplying it by ��

�	��, shifting it ��� samples and
dividing it by ��� we obtain a noisy estimate of the pseudo-noise
sequence. Multiplying it by ���� and adding it, we have a decision
parameter to determine the value of �. If the decision parameter is
positive then � � �, otherwise � � ��.
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Fig. 3. Spreading function corresponding to a delay of 20 and a
Doppler frequency of ��	� in a multi-path channel

3. SIMULATIONS

To illustrate our procedure, we let the time-varying channel have a
random number of paths, from 1 to 5, for each bit. For each path,
we assigned at random the delays (from 0 to 127), the Doppler
frequencies (from � to �); the gains were linearly related to the
delays. The results shown in Figs. 3 to 6 correspond to a simu-
lation with an additive media noise with 
�� � 
 dB. Figure
3 clearly shows the peak of the spreading function corresponding
to one of the Doppler frequencies and its corresponding delay and
gain, while figure 4 displays the thresholded spreading function
for a channel with 4 multi-paths. The recovered signal 
���� is
compared with the actual pseudo-noise sequence in Fig. 5, which

II - 611

➡ ➡



0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

0

20

40

60

80

100

Time−Delay

Frequency
Ω

/π

Fig. 4. Thresholded spreading function for a multipath channel
with four paths

can be seen as very close, and the correlated signal in Fig. 6, cor-
responding to a bit with � � �, shows a positive mean indicating
� � �.

In order to determine the goodness of the process in detecting
the correct bit sent, we then did a Monte-Carlo simulation, where
the model changes from bit to bit randomly as explained above –
attempting to simulate fast fading– and for each bit we performed
500 trials with different media noise, with the same SNR. The cho-
sen SNRs ranged from -9 dB to 0 dB. The results are very encour-
aging and are displayed in Fig. 7.
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Fig. 5. Recovered ����� (dotted line) and the actual pseudo-noise
sequence (solid line)
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Fig. 7. Bit error rate (BER) vs SNR

4. CONCLUSIONS

In this paper we propose a way to characterize the transmission
channel of DSSS, considering fast fading. The model varies from
bit to bit, and for each bit is characterized by the spreading function
that provides the number of paths, the delays, Doppler frequencies
and attenuations which are randomly varying. We showed that the
spreading function can be obtained using the discrete evolutionary
transform. As a preliminary result it was illustrated the detection
of the sent bit using the channel characterization and the pseudo-
noise sequence. Further work is needed to improve the computa-
tional load of the algorithm and the receiver.
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