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ABSTRACT

We consider the problem of synthesizing the sound at any

desired position and time from the recording of a set of mi-

crophones. Similar to the image-based rendering approach

for vision, we propose a sound-based synthesis approach for

sound. In this approach, audio signals at new positions are

interpolated directly from the recorded signals of nearby mi-

crophones. The key underlying problems for sound-based

synthesis are sampling and reconstruction of the sound field.

We provide a spectral analysis of the sound field under the

far-field assumption. Based on this analysis, we derive the

minimum sampling and optimal reconstruction for several

common settings.

1. INTRODUCTION

Existing audiovisual recording systems use a single cam-

era and microphone, and thus provide viewers with a pas-

sive viewing experience. We envision that, thanks to the

continuing improvement in digital technology that now of-

fers low-cost sensors and massive computing power, new

systems employing multiple cameras and microphones, to-

gether with sophisticated processing algorithms delivering

unprecedented immersive recording and viewing capabili-

ties, are now feasible. We believe that sufficient sensing,

networking, and computing power to practically address

this vision already exists; the critical gap in achieving it lies

in new signal processing theory and algorithms.

For visual signals, synthesizing new views of a scene di-

rectly from a set of acquired views is known as image-based
rendering (IBR) [1]. In contrast with traditional model-

based rendering, IBR requires very little or no geometrical

models of the scene. IBR can be seen as an application of

the sampling theory to the plenoptic function [2] that de-

scribes the light intensity passing through every viewpoint,

in every direction, for all time, and for every wavelength. In
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this setting, acquired views from the cameras provide dis-

crete samples of the plenoptic function, and the synthesized

view is reconstructed from the continuous plenoptic func-

tion at a given point.

Similar to image-based rendering, we propose an ap-

proach to synthesize the sound at any position directly from

the recording of a set of microphones, without knowing or

recovering all the sources that generate the sound field. We

refer to this approach as sound-based synthesis. As for IBR,

the key issues in sound-based synthesis is how to model,
sample, and reconstruct a sound field.

The sampling and reconstruction questions of a sound

field has been first studied by Ajdler and Vetterli [3]. In that

paper, the authors introduce and study the sampling and re-

construction problems of the plenacoustic function, which

characterizes the impulse responses of a sound field, in par-

ticular in a room. Knowing this function, the actual sound at

a desired position can be obtained via the convolution with

the source signal. Due to the effects of the reflections on the

walls and reverberations, spectral analysis of the impulse

responses of a room can be quite complicated.

In this paper we consider directly the sound field sig-

nal, which is defined as what would be heard or recorded

at any position and time. Addressing the sampling problem

of a sound field would lead to the reconstruction of actual

sound at any position. We consider the the far-field case,

for example in a stadium or an open field, where certain as-

sumptions significantly simplify the spectral analysis. Sec-

tion 2 formulates the problem and introduces our model of

a sound field. Section 3 provides a spectral analysis of the

sound field under the far-field assumption. Based on this

analysis, minimal sampling and optimal reconstruction are

derived for several cases in Section 4. We conclude with

some discussions in Section 5

II - 6010-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



2. PROBLEM FORMULATION

We define the sound field signal r(p, t) as the signal value

that would be heard or recorded at the position p =
(x, y, z)T and time t. The sound field signal r(p, t) is the

sum of each source signal delayed and attenuated according

to the received position p. We parameterize the emitting

signal from the i-th source by si(t) as the signal that would

be received at the reference position p = 0. Thus, the sound

field signal at arbitrary position p is

r(p, t) =
∑

i

ai(p) si(t − τi(p)), (1)

where ai(p) and τi(p) is the attenuation and delay, respec-

tively, for the source signal si(t) at the position p. We make

no assumption about the number of sources, which can be

dynamic and infinite. These sources include both actual

sound sources (e.g. speakers) as well as virtual sources (e.g.

due to reflection).

The attenuation for sound is typically equal to the in-

verse of square of the distance from the source. In that case,

we have

ai(p) =
‖pi‖2

2

‖pi − p‖2
2

, (2)

where pi is the position of the source i. In the far-field case,

where the sound sources are far away and we are only inter-

ested in a relatively small region near the reference position,

then ‖pi‖ � ‖p‖. In that case, we have

ai(p) ≈ 1 (3)

The time delay is equal to the sound propagation dis-

tance divided by the speed of sound λ (typically λ =
343m/s). Generally, as for the attenuation in (2), τi(p)
is a non-linear function of p. However, in the far-field

case where the sound sources are far away, we can con-

sider the wavefronts to be parallel planes. Let ui denote

the unit normal vector of the wavefront planes of the source

i. Then the signed distance of wavefront propagation of the

source i from the reference position 0 to the position p is

〈ui,p〉 = uT
i p; see Figure 1. In that case, τi(p) is a linear

function

τi(p) =
uT

i p

λ
. (4)

Our input is the recording samples from a set of micro-

phones at fixed positions. Hence, effectively we have dis-

crete samples of the sound field function r(p, t). Our task

is to synthesize from these samples the sound that would be

recorded (or heard) at any desired position.

The “conventional” approach to this problem is to locate

all the sound sources in the field, to recover those sources,

and to reconstruct the sound at any position. Sound source

source i

delay distance

wavefronts

0

ui

p

Fig. 1. Delay distance of wavefront propagation in the far-

field case.

recovery is a nontrivial problem, especially in dynamic en-

vironments. A popular method for source recovery is adap-
tive beamforming. Recent research using modern adaptive

beamforming techniques [4] has shown promising results

for sound source recovery in controlled environments with

a few sources and perfect knowledge of the source posi-

tions. However, such method only works when the number

of sources is small, for example in a room.

In large dynamic environments with many sources, such

as a sport event, there is little hope for recovering individ-

ual sound source. In such cases, an attractive alternative

is to directly synthesize the sound signals at desired posi-

tions, without explicitly recovering the sound sources. This

sound-based synthesis approach for sound is similar to the

image-based rendering for vision. The key underlying prob-

lems for the sound-based synthesis are sampling and recon-

struction of the sound field function r(p, t).

3. SPECTRAL ANALYSIS

To address the sampling and reconstruction of the sound

field function r(p, t) we need to analyze its spectral support.

The similar analysis was carried for the plenoptic function

[5, 6] and plenacoustic function [3].

The Fourier transform of the sound field function r(p, t)
can be written as

R(fp, ft) =
∫ ∫

r(p, t)e−j2π(fT
p p+ftt)dpdt

=
∑

i

∫ ∫
si(t − τi(p))e−j2πfttdt

ai(p)e−j2πfT
p pdp

=
∑

i

Si(ft)
∫

ai(p)e−j2π(fT
p p−ftτi(p))dp,

(5)
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where Si(ft) =
∫

si(t)e−j2πfttdt is the Fourier transform

of the source signal si(t).
In the far-field case, substituting (4) into (5) we get

R(fp, ft) =
∑

i

Si(ft)Ai

(
fp − ftui

λ

)
, (6)

where Ai(fp) =
∫

ai(p)e−j2πfT
p pdp is the Fourier trans-

form of the attenuation function ai(p).
The key observation is that because of (3), function

Ai(fp) is concentrated around fp = 0. Indeed, if ai(p) =
1 then Ai(fp) = δ(fp). Thus, from (6) the spectral support

of the sound field function r(p, t) is around the region

fp =
ftui

λ
, where Si(ft) �= 0. (7)

This region is in turn specified by the spectral supports of

the source signals si(t) and the ranges of ui.

To gain more insight about this spectral support region,

we consider the following two particular cases. In the first

case, we consider the sound field function along the line

p = (x, 0, 0)T . This corresponds to the common case where

the microphones are placed a long a line. The sound sources

are supposed to be on the plane z = 0. The unit normal

vectors ui of the wavefront planes for the source i can be

parameterized by

ui = (sin θi,− cos θi, 0)T , (8)

where θi is commonly referred to as the direction of arrival

(DOA); see Figure 2

x

y

uiθi

Fig. 2. Parameterize the unit normal vector of the wavefront

planes via the direction of arrival.

The equation (7) specifying the spectral support of

r(x, t) becomes

fx =
ft sin θi

λ
. (9)

Thus, if we suppose that each source signals si(t) is

bandlimited to fmax
t and the range of DOA’s is |θi| ≤ θmax,

fx

ft

fmax
t

fmax
x

Fig. 3. The spectral support region of the sound field func-

tion r(x, t), where fmax
x = fmax

t sin θmax/λ.

then the spectral support in (9) of r(x, t) will be a bow-tie

shaped region as shown in Figure 3.

In the second case, we extend the spatial domain to the

whole plane p = (x, y, 0)T . Then the bow-tie shaped re-

gion in Figure 3 becomes part of a cone in the 3-D space

(fx, fy, ft). If we furthermore restrict the spectral sup-

port of the source signal si(t) to fmin
t ≤ |ft| ≤ fmax

t then

the projection of the spectral support region of the function

r(x, y, t) onto the plane (fx, fy) is shown in Figure 4.

fx

fy

θmax

fmin
t /λ

fmax
t /λ

Fig. 4. The spatial spectral support region of the sound

field function r(x, y, t) where the spectral support of si(t)
is fmin

t ≤ |ft| ≤ fmax
t .
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4. SAMPLING AND RECONSTRUCTION

With the spectral analysis from the previous section, we are

now ready to solve the minimal sampling and optimal re-

construction problems for sound-based synthesis. Sampling

the sound field function r(p, t) on a lattice generates repli-

cated spectra. To avoid aliasing and to ensure perfect re-

construction, the sampling lattice has to be dense enough so

that these replicas do not overlap.

For the first case, where the sound field is restricted to

the x-axis and the spectral support of r(x, t) is given in Fig-

ure 3, optimal sampling is achieved using the quincunx lat-

tice [7, 3, 6]. However, with quincunx sampling, the inter-

polation function is nonseparable, and thus the reconstruc-

tion algorithm needs to use samples on both x and t axes.

A suboptimal but much simpler scheme is to use rectangu-

lar sampling. In this case, since the interpolation function

is separable (a tensor product of two sinc functions), at any

instant of time we can synthesize the sound at any point

along the x axis using the recorded samples at that time

of the nearby microphones. Such synthesis algorithm es-

pecially suits real-time applications. Rectangular sampling

considers the spectral support of r(x, t) to be bounded by

the dashed-line box in Figure 3, which leads to the follow-

ing sampling requirement

∆x ≤ 1
2fmax

x

=
λ

2fmax
t sin θmax . (10)

For example, when fmax
t = 5 kHz (typical human

speech) and θmax = 30◦, the maximal sampling interval ∆x
for putting the microphones along the x-axis line is equal

to 6.9 cm. In practice, we might need slightly smaller sam-

pling interval to account for the spread of Ai(fp).
For the second case, where sound field is extended to

the whole plane z = 0 and the spatial spectral support of

r(x, y, t) is given in Figure 4, simple geometry leads to the

following bounds on the spatial frequencies

|fx| ≤ fmax
t sin θmax

λ
(11)

fmin
t cos θmax

λ
≤|fy| ≤ fmax

t

λ
(12)

These bounds lead to the following requirements on spa-

tial sampling intervals

∆x ≤ λ

2fmax
t sin θmax (13)

∆y ≤ λ

2(fmax
t − fmin

t cos θmax)
(14)

For example, when fmin
t = 4 kHz, fmax

t = 5 kHz, and

θmax = 30◦, the maximal spatial sampling intervals are ∆x
= 6.9 cm and ∆y = 11.2 cm.

5. DISCUSSION

We have demonstrated the feasibility of the sound-based

synthesis approach in synthesizing the sound at any desired

position and time from the recording of a set of micro-

phones. The advantage of this approach is it works for any
number of sound sources, without knowing their positions

and recovering their signals. The resulting synthesizing al-

gorithm is based on simple interpolation and can be done

in real-time. The price to pay is a large number of required

microphones. Our spectral analysis of the sound field func-

tion solves the minimum sampling and optimal reconstruc-

tion problems of the sound field in the far-field case. While

the required number of microphones might appear to be too

large, it might become practical in the near future thanks to

the continuing improvement in producing low-cost micro-

phones. Moreover, results from our spectral analysis sug-

gest possible ways of increasing the spatial sampling inter-

vals (i.e. reducing the number of microphones) by adap-

tively localizing the bandwidth of the source signals or the

directions of arrival in time.
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