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ABSTRACT

Calibration is a serious challenge in the design of high-speed time-
interleaved analog-to-digital converters (ADCs). We develop an

iterative blind calibration technique for such converters. In partic-

ular, an Expectation-Maximize (EM) algorithm is used to estimate

the associated unknown gains and time-offsets, from which the
calibrated signal is recontructed. Tradeoffs between the calibra-

tion time, reconstruction quality, and the oversampling factor are

developed. The proposed algorithm can also be used in a variety

of other applications, including problems of distributed sampling
in sensor networks.

1. INTRODUCTION

Many modern digital systems require the sampling of very high

bandwidth analog inputs. Because it has been difficult to scale

individual analog-to-digital converters (ADCs) to operate at these
speeds, time-interleaved ADCs are an attractive alternative.

Time-interleaved ADCs increase the sampling rate of a sys-

tem by sending the analog input signal to multiple ADCs in a

round-robin manner. As depicted in Fig. 1, this is accomplished

by feeding the input simultaneously to the constituent ADCs and
having their timings staggered relative to one another. In this way,

a system with sampling period of Ts can be realized from M con-

stituent ADCs each operating with a sampling period MTs. More

specifically, the system designer aims for the ith ADC to produce
a quantization of yi[n] = x(nMTs + (i − 1)Ts), where x(t) is

the input signal.

In practice, however, there are both variations in gain among

the constituent converters, and variations in sampling phase due

to signal path length differences on the chip. Without compensa-
tion or calibration, these gains and timing offsets seriously degrade

overall converter performance. These errors and their effects are

increasingly well-understood; see, e.g., [1]. Hardware methods for

compensation have been proposed — see, e.g., [2]. However, the
analog components involved make such approaches often difficult

to use in practice. Other approaches requires the use of a training

signal; see, e.g., [3]. With such systems, normal operation must

be periodically suspended to perform recalibration, which can be
problematic in some applications.

In general, there are two steps to the calibration. The first in-

volves determining the associated gain and timing offset parame-

ters. The second is the compensation based on knowledge of these
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Fig. 1. Time-Interleaved ADC System

parameters. The second step is relatively straightforward, partic-

ularly in the high signal-to-noise ratio (SNR) regime of primary

interest in this paper. Indeed, this step corresponds to a variation
on the problem of signal reconstruction from non-uniform sam-

ples. As is well known, bandlimited signals can be reconstructed

in such scenarios provided the average sampling rate exceeds the

Nyquist rate [4]. Since in this application the non-uniform sam-
pling is recurrent, algorithms such as those of Eldar, et al [5], can

be used to produce the desired uniformly spaced samples. Thus,

our primary focus in this paper is the parameter estimation prob-

lem of the first step.

We focus on a blind parameter estimation approach that doesn’t
require knowledge of the input signal. To make this possible, we

sample at a overall rate which is faster than the Nyquist rate and

take advantage of deliberately introduced excess bandwidth in the

signal. One such blind method has previously been developed

to perform signal reconstruction [6]. This method uses correla-
tion properties of a slowly varying input in order to determine the

timing offsets. However, this method requires the use of a large

amount of oversampling to be effective. By contrast, our approach

can be effective even with arbitrarily small oversampling factors.
For clarity of exposition, we restrict our attention in the develop-

ment to the case of two interleaved ADCs (M = 2), and defer a

discussion of the natural generalization to larger numbers of con-

verters until the end of the paper.
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2. PROBLEM FORMULATION AND SIGNAL MODELS

We model the converter input x(t) as a stationary bandlimited

zero-mean Gaussian process with power spectral density

Sxx(jΩ) =

(
γ2/Ωc for Ω ∈ [−Ωc, Ωc],

0 otherwise.
(1)

The overall sampling period Ts of the system is chosen to ensure
that the sampling rate strictly exceeds the Nyquist frequency, i.e.,

Ts < π/Ωc
�
= TN. The signal recovery problem is to estimate

x(nTs), which is bandlimited to ωc = ΩcTs < π, as accurately

as possible from the ADC outputs.

We model the output of the ith constituent ADC as

yi[n] = gix(2Tsn + τi) + ci + wi[n], i = 0, 1, (2)

where the gi and τi model the unknown gains and timing off-

sets, and where wi[n] represents the quantization noise, which
we model as zero-mean, white Gaussian noise. Its variance σ2

depends on the number of bits to which the input is quantized.

Without loss of generality, we let g0 = 1 and τ0 = 0, so we may

eliminate subscripts on the remaining parameters, i.e., g1 = g, and

τ1 = τ . Finally, the ci model unknown DC offsets which are also
often present. To simplify our development, we let c0 = c1 = 0,

though their inclusion in the algorithm is straightforward.

3. ITERATIVE PARAMETER ESTIMATION

In this section, we develop an iterative method for producing max-

imum likelihood estimates of the desired parameter vector θ =
(g, τ ). In particular, we develop an approach based on the Ex-

pectation-Maximization (EM) algorithm [7]. This algorithm alter-

nates between two steps:

E-Step

Q(θ, θ̂(n)) = E[ln fZ(z; θ) | Y = y; θ̂(n)] (3)

M-Step

θ̂(n+1) = arg max
θ

Q(θ, θ̂(n)) (4)

where θ̂(n) is the parameter estimate from the nth iteration, and

where Y and Z are the incomplete and complete data for the prob-

lem, respectively.

The incomplete data are the ADC outputs corresponding to a

block of data of length N◦, i.e.,

Y = {y0[n], y1[n], n = 0, 1, . . . , N◦ − 1}.
Our complete data for the problem are Nyquist-rate interpo-

lated versions of the individual ADC outputs. In particular,

z0[n] = x(TNn) + w′
0[n] (5)

z1[n] = g x(TNn + τ ) + w′
1[n], (6)

with TN again denoting the Nyquist period, and with the w′
i[n] de-

noting the corresponding bandlimited interpolations of the quanti-

zation noises wi[n]. We make the convenient approximation that

the w′
i[n] are each white and of variance σ2. Hence,

Z = {z0[n], z1[n], n = 0, 1, . . . , N − 1}, where N = N◦ ·
(2ωc)/π.

Our algorithm is most naturally developed in the frequency
domain. Accordingly, we work with the discrete Fourier transform

(DFT) coefficients of our incomplete and complete data, which we

denote using Yi[k] and Zi[k], respectively.

Since our complete data vector

Z =
ˆ
Z0[0] · · · Z0[N − 1] Z1[0] · · · Z1[N − 1]

˜T

(7)

with Zi[k] = (1/
√

N)
PN−1

n=0 zi[n] e−j2πkn/N is a circularly-

symmetric complex Gaussian vector, its log-likelihood function

takes the form

ln fZ(z) = −N ln(2π) − ln(|Λ|) − ZHΛ−1Z (8)

= −N ln(2π) − N ln α − 1

α

X
kh

(g2γ2 + σ2)|Z0[k]|2 + (γ2 + σ2)|Z1[k]|2

− 2Re{gγ2βkZ∗
0 [k]Z1[k]}

i
(9)

where

α = (γ2 + σ2)(g2γ2 + σ2) − g2γ4
(10)

and

βk =

(
ejkζ2π/N 0 ≤ k < N/2

ej(N−k)ζ2π/N N/2 ≤ k < N
(11)

with ζ = τ/TN, and where the 2N × 2N covariance matrix Λ =
E[ZZH] of the complete data takes the simple tridiagonal form

Λ =

2
666666664

∗ 0 0 ∗ 0 0

0
. . . 0 0

. . . 0
0 0 ∗ 0 0 ∗
∗ 0 0 ∗ 0 0

0
. . . 0 0

. . . 0
0 0 ∗ 0 0 ∗

3
777777775

,

with the nonzero entries are indicated by ∗ symbols. More specif-

ically,

Λi,j =

8>>>>>>>>>><
>>>>>>>>>>:

γ2 + σ2 i = j, i < N

g2γ2 + σ2 i = j, i ≥ N

gγ2ejζ2πj/N i = N + j, j < N/2

gγ2ejζ2π(j−N)/N i = N + j, j ≥ N/2

gγ2e−jζ2πi/N j = N + i, i < N/2

gγ2e−jζ2π(i−N)/N j = N + i, i ≥ N/2

0 otherwise

(12)

where 0 ≤ i, j ≤ 2N − 1. The inverse of this matrix is also

straightforward to obtain via N smaller (2 × 2) matrix inversions,

and the result is also tridiagonal with the same diagonal locations.

The linear mapping from complete to incomplete data is straight-
forward to develop. In particular, the incomplete data are obtained

by downsampling the complete data by a factor of 2ωc/π. Since

this factor is not generally an integer, this sampling rate conversion

is implemented in practice by upsampling, lowpass filtering, then
downsampling. In the DFT domain, these steps in the transfor-

mation can be expressed as a sequence of matrix mutiplications.

Specifically,

Yi = HDHLPFHU Zi (13)
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where

Yi =
ˆ
Yi[0] Yi[1] · · · Yi[N◦ − 1]

˜T
(14)

Zi =
ˆ
Zi[0] Zi[1] · · · Zi[N − 1]

˜T
(15)

For convenience, we let

H =

»
HDHLPFHU 0

0 HDHLPFHU

–
(16)

so we can write

Y = HZ. (17)

It remains only to determine the computations for two steps of
the algorithm, which we develop next.

3.1. E-Step

Using (8), the expectation (3) can be readily evaluated and is an

affine function of the data. In particular, since the only part of the

log-likelihood function that depends on Z is the quadratic form
ZHΛ−1Z = tr{ZZHΛ−1}, we obtain

Q(θ, θ̂(n)) = − N ln(2π) − ln(|Λ(θ)|) (18)

− tr{E[ZZH | Y ; θ̂(n)]Λ(θ)−1},
where the notation Λ(·) denotes the covariance function (12) with

the parameters values set according to the argument.

Thus, it remains only to evaluate E[ZZH | Y ; θ̂(n)], which is

straightforward. Indeed, since Z and Y are jointly Gaussian, we

obtain from routine linear estimation theory [8]

E[ZZH | Y ; θ̂(n)] =
h
I − K(θ̂(n))H

i
Λ(θ̂(n))+ (µ(n))(µ(n))H

(19)

where

K(θ) = Λ(θ)HH
h
HΛ(θ)HH

i−1

(20)

and

µ(n) = E[Z | Y ; θ̂(n)] = K(θ̂(n))Y, (21)

with

Y =
ˆ
Y0[0] · · · Y0[N◦ − 1] Y1[0] · · · Y1[N◦ − 1]

˜T
.

(22)

The block (and diagonal) structure of the matrices can be exploited

to further simplify the computations in the E-Step.

3.2. M-Step

With our setup, the maximization (4) of (18) conveniently decou-

ples. In particular, since the optimizing τ does not depend on g,

one can solve for these parameters in order. In particular, the opti-

mization for τ simplifies to

τ̂ (n+1) = arg max
τ∈(0,2Ts)

Q
“
(g, τ ); (ĝ(n), τ̂ (n))

”
(23)

= arg max
τ∈(0,2Ts)

X
k

Re
n

βk(τ )E[Z∗
0 [k] Z1[k] | Y ; θ̂(n)]

o
(24)

The notation βk(·) denotes the variable (11) with the parameter

value set according to the argument.

The expectation terms in this equation are obtained from the

previous E-Step. Although this optimization does not have a sim-

ple closed form solution, it is possible to numerically test quan-
tized values in the interval for one that yields the maximum argu-

ment.

In turn, the optimization for g takes the form

ĝ(n+1) = arg max
g

Q
“
(g, τ̂ (n+1)); (ĝ(n), τ̂ (n))

”
. (25)

It follows that the maximizing value of g is the non-negative solu-

tion to the following cubic equation:

−N(γ2σ2 + γ4)g3−S01γ
2g2 − N(γ2σ2 + σ4)g

+ S1(γ
2 + σ2)g + S01σ

2 = 0 (26)

where

S1 =
X

k

E[Z1[k]|2 | Y ; θ̂(n)] (27)

and

S01 =
X

k

Re{βk(τ̂ (n+1))E[Z∗
0 [k]Z1[k] | Y ; θ̂(n)]}. (28)

4. ANALYSIS AND SIMULATIONS

Simulations were performed to evaluate the performance of the

signal recovery algorithm. The inputs used for testing were re-

alizations of stationary, bandlimited, Gaussian signals. For our

tests, we simulated a 12-bit ADC, corresponding to a signal-to-
quantization-noise power ratio of 70 dB. We set τ = 3Ts/4 and

g = 1.17; similar results were produced with other values. The

system was initialized with normalized estimates for the unknown

parameters: τ̂ 0 = TS and ĝ0 = 1, and reconstruction was per-
formed after 15 iterations of the EM algorithm.

To measure performance, we calculated the effective number

of bits the output quality represents, via (SNROUT − 1.76)/6.02.

Fig. 2 shows the performance of the algorithm as a function of
the calibration time, i.e., block size N◦. Each curve in the graph

pertains to a different degree of oversampling, expressed in terms

of the “excess number of converters.” For example, for an output

cutoff frequency of ωc = 0.6π, the signal can be accurately re-
constructed with only 1.2 converters, so that with a two-converter

system there are 0.8 excess converters.

The upper dashed curve in Fig. 2 depicts the number of effec-

tive bits when correct values of gain and time offset parameters are
used to reconstruct the signal. The lower dashed curve is equal to

the number of effective bits when no calibration is used. Differ-

ent levels of oversampling are represented through the three solid

curves. The top curve represents 0.8 excess converters, middle
curve represents 0.6 excess converters, and the bottom curve rep-

resents 0.4 excess converters.

As expected, tests show increasing reconstruction quality with

calibration time. After N◦ = 800 samples, the system shows a

marginal amount of improvement for increased calibration time.
Moreover, larger amounts of oversampling reduces the amount of

calibration time to reach a target output fidelity. In practice, it is

reasonable to use 0.8 excess converters in the 2 ADC system. For

long calibration times, this amount of oversampling is ample to
estimate gain and offset parameters which produce a reconstructed

signal within one bit from the ideal. Reducing the amount of ex-

cess converters from this point decreases overall performance, as

seen in the 0.4 and 0.6 excess converter cases.
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Fig. 2. Reconstructed signal quality, in terms of effective num-

ber of bits, as a function of calibration time for 2 time-interleaved
12-bit ADCs. Upper and lower dashed curves correspond to per-

fectly calibrated and uncalibrated converters, respectively. The

solid curves (from top to bottom) correspond to decreasing number

of excess converters, i.e., smaller oversampling factors.

The tests presented focused on a finite number of EM itera-

tions. As the amount of excess bandwidth decreased, more iter-

ations than we actually used are necessary for the algorithm to
converge. Some simple tests show that increasing the number of

iterations yields an increase in the recovery performance in the

small excess bandwidth regime. Although we present no analy-

sis at this point, we conjecture that the parameter estimates pro-
duced are consistent — that for even arbitrarily small amounts of

oversampling, perfect calibration is possible in the long calibra-

tion time limit; however, further analysis is necessary to confirm

this. Also, the question to whether the likelihood function has local
minima instead of a global minimum is unresolved. Our conjec-

ture is that at least in the high SNR regime no local minima exist.

5. CONCLUDING REMARKS

We have developed an attractive blind algorithm for signal recov-

ery in time-interleaved analog-to-digital converter systems. The

algorithm is iterative and involves alternating between estimating

the input signal covariance and estimating the unknown gain and

timing offset parameters. Via this process, we are able to obtain
signal reconstructions of the quality one would obtain from precal-

ibrated systems. The tradeoffs achieved between the oversampling

factor, calibration time, and reconstruction quality appear promis-

ing for practical applications.

While the paper restricted attention to the two-converter case,

the iterative algorithm we develop can easily be generalized to

work in systems with M > 2 ADCs. In this case, the complete

and incomplete data sets contain the DFT coefficients of M sig-
nals. The E-Step remains the same. The M-Step now computes

estimates for each of the τi’s and gi’s parameters in a sequential

manner. Qualitatively similar behaviors are observed in simula-

tions with more ADCs.

It is also straightforward to generalize the algorithm to operate

with input signals that are bandlimited but not necessarily spec-

trally flat. This can be is accomplished by incorporating additional

spectral parameters into the problem.
From a broader perspective, this general family of signal re-

construction algorithms has a variety of applications beyond the

context of blind time-interleaved ADC calibration. In problems

of distributed sampling in sensor networks, for example, the need
for such algorithms arises. Indeed, our methods can be applied in

any number of data acquisition systems where multiple sampling

components are operating asynchronously.
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