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ABSTRACT

The operation of digital signal processors in continuous time is

discussed. It is shown that the main advantages of digital 

arithmetic can be maintained in such operation, while aliasing of 

the signal and the quantization error is avoided altogether.

Continuous-time operation makes possible a smaller number of 

bits for a given signal-to-quantization error ratio. Simulation

results are presented.

1. INTRODUCTION 

Consider a quantizer with analog input and output, as in Fig.

1(a). For simplicity, we will assume that the input  is 

sinusoidal, with frequency . The output  will thus be 

periodic, and its spectrum will contain components only at

, m integer, as shown in Fig. 1(d); only odd harmonics are 

found if the quantizer characteristic is symmetric around the

origin. In conventional digital signal processing, a sampling 

operation at a frequency  precedes quantization, as

shown in Fig. 1(b). For the purposes of calculating the output, 

the two operations can be interchanged as shown in Fig. 1(c) 

without altering the result. In the latter figure it is apparent that,

even though the input is properly band-limited, the output of the

quantizer is not, due to the many harmonics introduced by the 

nonlinearity of the latter. Due to the subsequent sampling, these

harmonics are aliased to frequencies , p, m integers. 

Assuming that  is a rational number, the resulting

spectrum is discrete, with components falling in-band, as shown 

in Fig. 1(e). This so-called “quantization noise” is thus 

equivalent to aliased harmonic distortion. If a bandwidth 

approximately equal to  is considered, the total in-band

quantization error power turns out to be approximately equal to

that at the output of the quantizer, and for  quantization 

levels it is given by the classical result of  dB 

relative to the rms value of the sinusoidal input signal.
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The above quantization error can be contrasted to the case of a 

quantizer without sampling in Fig. 1(a). The total power of the 

harmonics at the output of the latter, taken over the extremely

wide band in which they are found, is the same as discussed 

above; however, if only the signal band of interest is considered, 

the number of quantizer harmonics falling in that band can be 

much smaller (see Fig. 1(d)), and thus so will be the in-band

quantization error. Fig. 2 shows an example for a uniform 

quantizer with  levels, where ; as seen, even if the 

input frequency is 1000 times smaller than the upper band-edge 

frequency (in which case 1000 harmonics will be present in-

band), the total in-band quantization error is significantly

smaller than the classical value for sampling plus quantization, 

assuming no oversampling; this value is indicated in the figure. 

This advantage is directly due to the fact that, in the absence of

sampling, the quantization error is not aliased, and presents a 

challenge to implement digital signal processors without any

sampling. The rest of this paper studies digital signal processors 

which operate in purely continuous time (CT). A preliminary

qualitative description of the main idea has been presented in a

brief letter [1] along with experimental results from a 

rudimentary implementation (a first-order filter with 2-bit 

coefficients and 4-bit signal quantization). Here we instead

present the theoretical justification, and report simulation results 

from high-order structures with multi-bit signal quantization. 

n2 12n

2. PRINCIPLE 

We consider as a prototype a classical analog transversal

structure [2] consisting of continuous-time delays D and analog 

multipliers, as shown in Fig. 3. The quantizer at the input will 

for the moment be ignored. The output of the structure is: 
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with T being the delay of one delay element. Taking Laplace 

transforms we obtain: 
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3. DESIGN CONSIDERATIONSWe now assume that  is an adequate representation of the 

input , quantized to the equivalent of N bits by the 

quantizer shown, and thus can be represented by:
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For completeness, we summarize here some hardware design 

considerations from Ref. 1, and expand on some of them. 
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The coefficients  are implemented by digital words, and are 

multiplied by single-bit waveforms; thus no multiplications are

required, and the bit waveforms b  can be used to

simply gate the coefficient words to the adder. The continuous-

time digital delay elements can be implemented in several ways,

one of which uses digital inverters in cascade. The delay value 

for each element can be augmented by extra capacitive loading 

and by limiting the current driving capability of each inverter, 

but it must be short enough so that the inverter can completely

switch between 0 and 1 within the shortest anticipated interval; 

from Fig. 4 it is evident that this can be decided from knowledge 

on the highest rate of change expected at the input. For large T,

several inverters have to be placed in cascade, and the value of

the total delay fine-tuned by locking it to the period of an

external clock through a phase-locked loop. It is stressed that the 

clock in such a scheme is only used to program the delay value, 

and in no way does it interfere with the CT operation of the

structure.
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where ,  are binary CT waveforms

(henceforth called “bit waveforms”). The representation in (4) is 

illustrated in Fig. 4. It is emphasized that the bit waveforms,

although binary, are functions of continuous time, just as the 

input signal is. In hardware implementation, such signals can be 

produced by a continuous-time parallel analog-to-digital

converter (ADC) with no clock [3]. No time sampling is 

involved; the sampling is in the amplitude domain [4-6], since 

the pre-determined quantization levels and the input 

waveform determine the transition instants .

)(tbn Nn ,...,1

iw

it

From (1) and (4) we obtain: 
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)(2)(   (5) Depending on the relation between the input frequency and the 

delay values, the transitions of the various bit waveforms at the 

input of the adder can  differ in time by a very small amount. 

This places demands on the speed of the adder and DAC, and 

may limit the proposed technique to low-frequency applications.

Limited speed will affect the least significant bit first; for

example, the minute up-then-down spike in Fig. 6 may be 

missed. The result is not serious, as the energy of such spikes is

primarily at out-of-band frequencies, and no new frequency

components are introduced to the output spectrum. The latter 

claim can be easily seen in the case of a periodic input: the

above spike train will then also be periodic with the period of the 

input, and its frequency components will be at integer multiples

of the input frequency. As the input frequency is raised, the 

degradation of the quantization error due to such effects is 

graceful, not only because the in-band energy of such spikes is

small, but also because at high input frequencies more and more

of the spike harmonics fall out-of-band. Simulations confirm 

this. Finally, it is stressed that the above errors do not have a

lasting effect, since only combinational logic with no memory is

used.

which, after interchanging the order of summation, leads to: 
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The quantity in brackets represents exactly the same type of 

processing for b , as (1) indicates for w; the coefficients

can be implemented digitally (see below). The rest of the

expression indicates binary weighting and summation. This can

be accomplished by a digital weighted adder using

combinational logic. The resulting digital output can be

converted to analog form by a digital-to-analog converter (DAC) 

based on a binary-weighted continuous-time analog adder [3],

with no clock.

n ka

The operations just discussed can be represented as shown in 

Fig. 5. From the above derivation it follows that the systems of 

Figs. 3 and 5 are input-output equivalent. Depending on the 

times the bit waveforms are changing and the relative times their 

delayed versions arrive at the adder input, the output can exhibit 

local non-monotonicity, as shown in Fig. 6 (a very coarse

quantization has been used for illustration purposes). For a 

periodic input, the output quantization error is also periodic, and 

its spectrum is found only at the same frequencies as those of the

input quantization error spectrum. Given that the systems of 

Figs. 3 and 5 are input-output equivalent as shown above, one 

may find it easier to deduce some facts about the latter by

looking at the former; for example, as follows from Fig. 3, the 

output quantization error is simply the input quantization error 

filtered by the same transfer function as the signal itself. 

Recently proposed non-uniform sampling ADC techniques [5,6]

can be employed. In certain of these schemes a clock is used; if

the time quantization is sufficiently fine, the resulting pseudo-

CT operation can still provide satisfactory results. The structure 

then becomes basically equivalent to a conventional digital

signal processor with a very high degree of oversampling. 

4. SIMULATION RESULTS 

Various structures have been extensively studied through 

Matlab/Simulink simulations. A very fine, fixed time step was 

used, and care was exercised in setting the parameters of Fourier 

analysis, in order to accurately check the nature of the output 

spectrum. As an example, we implemented a 28th-order
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transversal structure, with unit element delay of 125T s

and 12-bit input signal quantization. An equiripple passband 

response was used, combined with a narrow stopband in order to

allow most of the frequency components of the input signal 

quantization error to get through to the output, for illustration 

purposes. The passband was 0 to 3.3 kHz. The frequency

response up to 32 kHz is shown in Fig. 7(a); as seen, it is

periodic with period 1 =8 kHz. This is to be expected, since

(3) is identical to the z-transform transfer function of a 

corresponding discrete-time filter, with z replaced by e . The 

output spectrum for a sinusoidal input of 1 kHz is shown in Fig. 

7(b). As expected from the above discussion, the quantization 

error components are found only at multiples of the input

frequency (in fact, only odd harmonics are found, due to the 

symmetry of the quantizer characteristic around the origin). This

causes the total in-band quantization signal to be only -120 dB

(referred to the input rms value) with the 12 bit quantization 

used, consistent with Fig. 2. This error increases to -106 dB 

when the input signal frequency is decreased to 100 Hz. When

the input is changed to 5 kHz, the output spectrum becomes as

shown in Fig. 7(c). A classical discrete-time filter with the same

frequency response (based on 8 kHz sampling) would have

produced an alias component at 3 kHz; however, in the case of 

the CT version it is seen that no such aliasing is produced;

indeed, as expected from the theory presented above, neither

signal aliasing nor quantization error aliasing are observed, and 

in fact there is no in-band quantization error in this case. 
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5. CONCLUSIONS 

Analysis and simulations, presented here, and supported with 

experimental evidence presented in Ref. 1, suggest that

continuous-time digital signal processing is possible, and that it 

presents several advantages in comparison to the classical,

discrete-time case:  (a) No signal aliasing; (b) No quantization 

error aliasing; this avoids sub-harmonic components, and

reduces the in-band quantization error power. Despite the 

continuous-time operation, the technique is digital, with all 

signals inside the processor being binary-valued, and thus it 

shares with discrete-time signal processing the advantage of 

noise immunity in hardware implementations. The technique 

shares with the discrete-time case the property that the frequency

response is periodic. The approach places demands on the speed 

of the adder and DAC used, which may limit the frequency

capability of the technique and, in any case, represents a 

hardware design challenge. The extent to which this challenge

can be met can only be determined via a full-blown hardware

implementation.
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Fig. 1 (a) Quantizer, (b) Sampler and quantizer, (c) System in 

principle equivalent to (b); (d) Output spectrum for (a); (e) 

Output spectrum for (b) and (c). 
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Fig. 2 Quantization (12 bit) error power relative to signal power 

for a sinusoidal input, as a function of the ratio of upper band-

edge frequency to input frequency. No oversampling is assumed 

in the case of sampling and quantization. 

200 400 600 800 1000
-120

-110

-100

-90

-80

-70

-60

Upper band-edge to  input frequency ratio

Q
u

a
n
ti
z
a
ti
o
n
 e

rr
o
r 

re
l.
 t

o
 s

ig
n
a
l 
(d

B
)

12 bits Sampling and

quantization

Quantization only

II - 591

➡ ➡



Fig. 3 Analog transversal structure based on continuous-time

delay elements, preceded by  a quantizer. 
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Fig. 6 Typical output waveform for the systems in Figs. 3 and 5; 

a very coarse quantization is used for illustration purposes. 
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Fig. 4 A CT (continuous-time) signal , its uniformly

quantized version w , and the CT digital representation of 

 in terms of CT bit waveforms.
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Fig. 7 Simulation results for a 28-tap low-pass transversal

structure using 125 s delay elements with 12-bit input 

quantization, with a 3.3 kHz passband. (a) Frequency response,

(b) Output with 1 kHz  input, (c) Output with 5 kHz input.
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Fig. 5 Continuous-time  DSP 

structure preceded by an ADC 

and followed by a DAC; the 

entire system is input-output 

equivalent to that in Fig. 3. 

“CT” stands for “continuous 

time”.
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