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Email: [frida,fredrik,fred]@isy.liu.se

ABSTRACT

In many real-time applications, sample values and time stamps
are delivered in pairs, where sampling times are non-uniform.
Frequency analysis using non-uniform data occurs in vari-
ous real life problems and embedded systems, such as vibra-
tional analysis in cars and control of packet network queue
lengths. Our contribution is to first overview different ways
to approximate the Fourier transform, and secondly to give
analytical expressions for how non-uniform sampling af-
fects these approximations. The results are expressed in
terms of frequency windows describing how a single fre-
quency in the continuous time signal is smeared out in the
frequency domain, or, more precisely, in the expected value
of the Fourier transform approximation.

1. INTRODUCTION

Frequency analysis using non-uniform data occurs in many
real life problems and in many embedded systems. For in-
stance, in automotive applications, all signals in modern
cars are taken from the CAN bus, where sensor observa-
tions and time stamps are delivered in pairs upon regular
or event triggered requests. For chassi and tire vibration
analysis, it is thus useful to gain full insight into how this
affects frequency analysis. As an example, the wheel an-
gular speed signals are event-based sampled in the time do-
main (uniformly sampled in the angular domain), and these
signals are crucial for many control and informations sys-
tems in cars [1, 2]. These signals are delivered with a time
stamp, but the real sampling instants may differ with a ran-
dom value causing a so called jitter sampling.

Another application of our focus is adaptive network
queue control. The protocol in current Internet routers gives
the queue length each time instant a packet arrives, but not
when packets leave the queue. The router then sends an ac-
knowledgment back to the sender that the packet is received.
However, in active queue management (AQM), the router
may decide not to send an acknowledgment if the queue is
full or is likely to become full if the senders continue to send
with the current rate. The basic idea in model-based AQM

[3] is to base the control principle on frequency analysis, or
a model derived from frequency analysis. It has been em-
pirically noted that the queue length in Internet routers con-
tains frequency components, but the complicated interplay
of the network makes an analytical approach intractable.

The idea is thus to consider the queue length y(t) as a
continuous time function, randomly sampled when packets
of unequal sizes arrive. Classical approaches on queue the-
ory derive distributions for the inter arrival times for pack-
ets of fixed sizes, ranging from simple Poisson processes to
more recent self-similar processes [4], but these are not so
suitable for control purposes.

Randomized sampling is described in [5, 6, 7]. Research
is focused on how to choose sampling instants to maximize
alias frequency suppression. In [8], an empirical motiva-
tion to add random jitter is given with some user guidelines.
In [9], an algorithm for hardware implementation promis-
ing 40 times the bandwidth of the corresponding uniform
sampling process. Algorithms for recovery of band limited
signals are given in [10, 11]. No illustration of the effects
of leakage when nonuniform sampling is used have been
found.

2. OVERVIEW

Consider a continuous time signal y(t), which is non-uniformly
sampled y(ti) at the time instants ti, i = 1, 2, . . . N , where
we denote the sampling intervals Ti = ti − ti−1. Random
additive sampling occurs when Ti are independent random
variables and jitter sampling when ti = iT + ni, where ni

are random variables.
Our interest is focused on approximating the Fourier

transform

Y (f) =
∫ ∞

−∞
y(t)ei2πftdt. (1)

We will first survey available methods that fall into one
of two different approaches to approximate this continuous
time integral:

1. A Riemann approximation approach, where the in-
tegrand y(t)ei2πft is spline interpolated between the
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observations. For uniform sampling and a zero or-
der spline (piece-wise constant integrand), the dis-
crete Fourier transform (DFT) is obtained as a special
case.

2. An interpolation approach, where the signal value is
interpolated using splines or other basis functions. For
a band-limited signal, the well-known sinc basis func-
tion expansion

y(t) =
N∑

k=1

y(kT )
sin(π(t − kT )/T )

π(t − kT )/T
(2)

=
N∑

k=1

y(kT ) sinc(
t − kT

T
) (3)

exists for uniform sampling. Note that this interpo-
lation formula provides a system of linear equations,
which is solvable for y(kT ), k = 1, 2, . . . N for any
set of non-uniform samples y(ti), i = 1, 2, . . . ,M
whenever M ≥ N , that is, when the average sam-
pling rate is larger than or equal to the Nyquist rate.

These approaches will yield an approximation Ŷ (f). Since
this is a linear function of the observations y(ti), superpo-
sition applies. Thus, insight into the implications of non-
uniform sampling is obtained by studying the approxima-
tion of a pure sinusoid y(t) = sin(2πf0t). The approxima-
tion can then be expressed as

Ŷ (f) = W (·; tN ) ∗ Y (f) (4)

= W (f − f0; tN ) − W (f + f0; tN ). (5)

Here tN denotes the set of sampling points, and ∗ denotes
convolution. For uniform sampling and a uniform (boxcar)
time window, the frequency window becomes the periodic
sinc-like function

W (f ; tk = kT ) = e−iπfNT sin(πfNT )
sin(πfT )

. (6)

This function describes the leakage effects. Other data win-
dows as Hamming, Hanning etc. gives other similar win-
dows. Note that since these are all periodic functions, we
have the well-known frequency ambiguity in uniform sam-
pling. This is not the case for non-uniform sampling, where
leakage and frequency ambiguity are intrinsic properties of
the sampling instants, both revealed in the frequency win-
dow W (f, f0; tN ).

The main contribution is then to characterize the ex-
pected value of this approximation for randomized sam-
pling, where the exact sampling times tk are unknown, and
only their distribution is known. The implication of ran-
domized sampling is that the expected value of the Fourier
transform approximation depends on the probability density
function (pdf) p(tN ) for the sampling instants, so we get

E(Ŷ (f)) = W (f, f0; p(tN )) − W (f,−f0; p(tN )). (7)

3. FOURIER TRANSFORM APPROXIMATIONS

The measurements, y(ti), are used to approximate the inte-
grand, I(t), or the original continuous signal, y(t). These
approximations are then used together with the definition
of the continuous Fourier transform, (1), to produce an esti-
mate, Ŷ (f), of the transform for the measured signal. Three
different transform approximations are presented: Extended
Riemann approximation; Reconstruction of y(t) using splines;
and Reconstruction of bandlimited signals.

More elaborate calculations and an evaluation of the trans-
form approximations can be found in [12].

Spline interpolation is done by connecting sample points,
f(tk), with polynomials, pn

k (t), of order n. The continuous
function approximation is defined as

f̂(t) = pn
k (t), tk−1 < t ≤ tk. (8)

The polynomial constants are defined by continuity demands
at the sample points.

3.1. Integrand interpolation

Riemann approximation of an integral is approximation of
the integrand with a piecewise constant function. Using the
measurements, y(tk), the integrand I(t) = y(t)e−i2πft can
be approximated using higher order splines. Let În(t) be
the continuous estimate of I(t), based on measurements,
I(tk) = y(tk)e−i2πftk , and an nth order spline. The first
two splines become

Î0(t) = I(tk)

Î1(t) =
I(tk) − I(tk−1)

Tk
(t − tk) + I(tk),

(9)

for tk−1 < t ≤ tk.
The Fourier transform estimate becomes

Ŷ n
ra(f) =

N∑
k=1

∫ tk

tk−1

În(t)dt. (10)

For the first orders of n, the explicit expressions become

Ŷ 0
ra(f) =

N∑
k=1

I(tk)Tk =
N∑

k=1

y(tk)Tke−i2πftk

Ŷ 1
ra(f) =

N∑
k=1

Tk

2
(I(tk) + I(tk−1))

=
1
2

N∑
k=1

(Tk + Tk+1)I(tk).

The last equality demands that T1I(t0) = 0 and TN+1I(tN ) =
0, but the relation shows that the increased polynomial or-
der merely changed the scaling of the integrand I(tk). The
mean value of two subsequent inter sample times are used
instead of only Tk.
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3.2. Signal interpolation

Spline interpolation of the signal can be done by connecting
the sample points, y(tk) with polynomials, pn

k (t), of order
n. The continuous function estimate is, as before, defined
as

ŷn(t) = pn
k (t), tk−1 < t < tk. (11)

When n = 0, ŷ0(t) is piece-wise constant. The explicit
transform in this case becomes

Ŷ 0
sp(f) =

∑
k

yk

∫ tk

tk−1

e−i2πftdt

=
i

2πf

N∑
k=1

yke−i2πftk
(
1 − ei2πfTk

)
.

(12)

Comparing Ŷ 0
sp with Riemann approximation of the inte-

gral, Ŷ 0
ra (9), shows that the difference lies in the scaling of

the terms in the sum. Using a Taylor expansion for ei2πfTk

shows that Y 0
sp scales the terms with

i

2πf
(1 − e−i2πfTk) = Tk + O(T 2

k ),

while Ŷ 0
ra scales the terms with Tk. This means that

Ŷ 0
sp ≈ Ŷ 0

ra, if Tk << 1, ∀k.

For n = 1, ŷ1(t) is piece-wise linear between the mea-
surement points. The spline polynomials become

p1
k(t) =

yk − yk−1

Tk
(t − tk) + yk, k = 1, . . . , N.

Letting αk = yk−yk−1
Tk

gives the transform approximation

Ŷ 1
sp(f) =

N∑
k=1

∫ tk

tk−1

[αk(t − tk) + yk] e−i2πftdt

= Ŷ 0
sp(f)

+
1

(2πf)2

N∑
k=1

αke−i2πftk
(
1 − ei2πfTk

)

+
i

2πf

N∑
k=1

αkTke−i2πftkei2πfTk

(13)

The transform of yk, for n = 1, contains the transform of
yk for n = 0, the scaled transform of αk for n = 0 and a
third term based on αk. The structure of the third term is
very similar to the structure of a Riemann approximation.
The novelty when introducing a higher order spline repre-
sentation is shown in the last two terms.

For higher order splines the expressions become messier
and no calculations have been performed for this case.

3.3. Band-limited signals

For bandlimited signals the sinc function can be used. Ap-
plying the assumption of an underlying sum of sinc’s

ŷ(t) =
∑

k

ck sinc(ak(t − bk))

gives a straightforward calculation of the Fourier transform.

Ŷsinc(f) =
∑

k

ck

∫ ∞

−∞
sinc(ak(t − bk))e−i2πftdt

=
∑

k:f<
ak
2

1
ak

cke−i2πfbk . (14)

The signal is bandlimited to maxk(ak/2). After choosing
ak and bk, the amplitudes ck can be solved for from a lin-
ear equation system, y(ti) = ŷ(ti), ∀i. Placing the sinc’s
equidistantly is one option, i.e., bk = kT , ak = 1

T . From
(2), this case gives that ck = y(kT ). This special transform
approximation becomes

Ŷsinc(f) =
{

T
∑N

k=1 cke−i2πfkT , f < 1
2T ,

0, otherwise.
(15)

4. STOCHASTIC SAMPLING

To find the window in (7) the expected value of Ŷ 0
sp(f) will

be calculated when

y(t) = sin(2πf0t) =
1
2i

(ei2πf0t − e−i2πf0t) (16)

is sampled nonuniformly and the inter event times, Tk, have
the probability density function fT (τ). The details of the
calculations have been left out and can be found in [12], as
before. The samples, yk = y(tk) = y(

∑k
n=1 Tn), become

yk =
1
2i

(
ei2πf0

∑ k
n=1 Tn − e−i2πf0

∑ k
n=1 Tn

)
(17)

Assuming that the inter sample times, Tk, are independent
identically distributed stochastic variables, with probability
density fT (τ), the expected value of Ŷ 0

sp, (12), is calculated,
using yk from (17), as

E[Ŷ 0
sp(f)] =

1
4πf

(χ(f, f0) − χ(f,−f0)). (18)

This means that the window (7) is

W (f, f0, p(tN )) = χ(f, f0)/(2πf).

The function χ(f, f0) evaluates according to

χ(f, f0) =

{
(γ(f,f0)−γ(0,f0)) 1−γ(f,f0)

N

1−γ(f,f0)
γ(f, f0) �= 1

(1 − γ(0, f0))N γ(f, f0) = 1

γ(f, f0) =
∫
R

e−i2π(f−f0)τfT (τ)dτ (19)
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Fig. 1. E[Ŷ 0
sp(f)] in (18), uniform distribution, Tk ∈ [τl, τh], for the signal (16) with f0 = [0.5, 1.5, 2.5, 3.5].

The choice of sampling distribution affects the final trans-
form through the expected values

γ(f, f0) = ET [e−i2π(f−f0)T ],

γ(0, f0), γ(f,−f0), and γ(0,−f0),

where ET means expected value with respect to T . Figure 1
illustrates the window, (18), when fT describes a uniform
distribution, Tk ∈ [τl, τh]. An exponential distribution with
the same support gives a similar window.

Since Ŷ 0
sp ≈ Ŷ 0

ra for small inter event times and Ŷ 0
ra =

Ŷsinc for uniform sampling and f < 1
2T , the analytical ex-

pression of E[Ŷ 0
sp] is of great interest. It can be argued that

the expected values for ŷ0
ra and ŷsinc will behave similar to

E[Ŷ 0
sp] for small Tk’s and narrow distributions, respectively.

It remains to investigate the extent of the correspondence.

5. CONCLUSIONS

This work presented an analytical expression for the ex-
pected value of a Fourier transform approximation based on
additive random sampling. It was argued that the support of
the inter sample times affects the alias suppression.
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N. Persson, and H. Quicklund, “Virtual sensors of
tire pressure and road friction,” in Society of Automo-
tive Engineers World Congress, Detroit, 2001, number
SAE 2001-01-0796.

[3] F. Gunnarsson, F. Gunnarsson, and F. Gustafsson,
“Controlling internet queue dynamics using recur-
sively identified models,” in 42nd IEEE Conference
on Decision and Control, Dec. 2003.

[4] S. Andersson, Hidden Markov Models — Traffic Mod-
eling and Subspace Methods, Ph.D. thesis, Lund In-
stitute of Technology, 2002.

[5] A. Papoulis, Signal Analysis, McGraw-Hill, 1977.

[6] I. Bilinskis and A. Mikelsons, Randomized Signal
Processing, Prentice Hall, London, 1992.

[7] F. Marvasti, Zero-crossings and Nonuniform Sampling
of Single and Multidimensional Signals and Systems,
Nonuniform, 1987.

[8] D. M. Bland and A. Tarczynski, “Optimum nonuni-
form sampling sequence for alias frequency suppres-
sion,” in IEEE International Symposium on Circuits
and Systems, Jun 1997.

[9] F. Papenfuss, Y. Artyukh, E. Boole, and D. Tim-
mermann, “Optimal sampling functions in nonuni-
form sampling driver designs to overcome the nyquist
limit,” in Acoustics, Speech, and Signal Processing,
2003., IEEE International Conference on, Apr 2003.

[10] F. Marvasti, “Nonuniform sampling theorem for band-
pass signals at or below the nyquist density,” IEEE
Transactions on Signal Processing, Mar 1996.

[11] F. Marvasti, M. Analoui, and M. Gamshadzahi, “Re-
covery of signals from nonuniform samples using it-
erative methods,” IEEE Transactions on Signal Pro-
cessing, Apr 1991.

[12] F. Gunnarsson, “On modeling and control of net-
work queue dynamics,” Licenciate Thesis, No. 1048,
Dep. of Electrical Engineering, Linköpings Univer-
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