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ABSTRACT
We consider the problem of interpolating a continuous-time

signal from a set of uniformly spaced discrete-time samples. One
of the prime methods of interpolation is based on the use of uni-
form B-splines. In this paper, we introduce a new interpolation
approach using nonuniform B-splines as interpolation kernels. We
show both theoretically, and through simulation results, that using
nonuniform B-splines for interpolation of a signal from uniform
samples can result in a higher quality of interpolation with respect
to uniform B-splines, at the same computational cost.

1. INTRODUCTION

Interpolation is at the heart of digital signal and image process-
ing theory, and arises in a variety of applications [1]. It is used
to estimate intermediate values of a continuous-time (CT) signal
f(x) from its discrete-time (DT) samples fn = f(xn). Examples
in which interpolation is required include image transformations
such as rotation, image rescaling (reduction or magnification), and
data resampling. There are also applications where we can benefit
from introduction of efficient interpolation algorithms, for exam-
ple data compression and image warping.

The principal of interpolation is to represent a CT signal as
a linear combination of shifts of some interpolation kernel. The
Shannon-Whittaker theory provides a perfect reconstruction of ban-
dlimited functions from uniformly spaced samples, when sinc(x)
is chosen as the interpolation kernel. Direct implementation of
sinc(x) is impossible due to its infinite support. Still, this method
is widely used in the front end of digital systems, with various fi-
nite approximations of sinc(x). Another interpolation approach
is based on the design of interpolation kernels that are piecewise-
polynomial with short support [2].

Traditionally, interpolation kernels were designed to satisfy
the interpolation constraint, which requires the kernel to vanish at
all sampling points except the origin. However, in recent years this
constraint has been relaxed, and more general interpolation kernels
have been designed, which do not necessarily satisfy the interpo-
lation constraint [3], [4]. Generalized interpolation, which we re-
view in Section 2, provides a wider choice for interpolation ker-
nels, which may have better interpolation properties. To analyze
the performance of different interpolation kernels, in Section 3,
we introduce the Fourier error kernel as a basic tool for character-
ization of the approximation error for a given interpolation kernel
[5]. The most popular generalized interpolation functions, due to
their excellent interpolation properties and short support, are uni-
form B-splines [3], or linear combinations of uniform B-splines
and their derivatives [4]. Numerous experiments [1] have shown
their advantages over traditional interpolation kernels.

In this paper, we introduce a new class of generalized interpo-
lation kernels, which lead to efficient interpolation in the squared-
norm sense. Our approach is based on using nonuniform B-splines,
which we define in Section 4, as interpolation kernels. In Section 5
we show that using nonuniform B-splines can reduce the interpo-
lation error, with no additional computational cost.

2. GENERALIZED INTERPOLATION

We consider the problem of interpolating a CT signal f(x), from
its uniform samples fn = f(n), where we assume for simplic-
ity that the sampling period T is equal to 1. The generalized in-
terpolation approach interpolates a CT signal fint(x) as a linear
combination of uniform shifts of an interpolation kernel ϕ(x)

fint(x) =
∑
k∈Z

ckϕ(x − k), (1)

where cn is a set of discrete values, that is uniquely determined by
the samples fn. In this paper, we restrict our attention to consistent
interpolation methods, i.e., we require that fint(n) = fn.

Traditionally it was common to choose cn = fn. In this case,
to guarantee consistent interpolation, the interpolation kernel must
satisfy the interpolation condition ϕ(n) = δ[n], where δ[n] is the
Kronecker delta function. A classical example is the sinc(x) inter-
polation kernel.

For more general interpolation kernels, the interpolation (1) is
consistent if

fn = fi(n) =
∑
k∈Z

ckϕ(n − k) = (c ∗ b)n, (2)

where bn = ϕ(n) and (c∗b)n denotes the DT convolution between
cn and bn, which is equivalent to digital filtering. From (2) if fol-
lows that the coefficients cn can be found by inverse convolution
as

cn = ((b)−1 ∗ f)n, (3)
where (b)−1 is the convolution-inverse of b, and its z-transform is
given by

B−1(z) =
1∑

k∈Z bkzk
. (4)

Assuming the interpolation kernel ϕ(x) is symmetric, the filter (4)
can be implemented efficiently by decomposing it into a causal and
an anti-causal filter; for details see [6].

The most popular generalized interpolation kernels are uni-
form B-splines [3]. In Section 5 we show that the quality of the
interpolation can be improved by using nonuniform B-splines as
interpolation kernels, in place of uniform B-splines. To this end,
in the next section we consider mathematical tools for analyzing
the performance of different interpolation kernels.

II - 5770-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



3. ERROR ANALYSIS

3.1. Error Kernel

It was shown in [5] that if f(x) is bandlimited to [−π, π], then

η2 =
1

2π

∫ ∞

−∞
|f̂(ω)|2Eint(ω)dω, (5)

where η = ‖f(x) − fint(x)‖L2 is the squared-norm of the in-
terpolation error, and Eint(ω) is an interpolation error kernel that
depends on the interpolation kernel ϕ(x) only, and is given by

Eint(ω) = 1 − ϕ̂(ω)2

â(ω)
+

∣∣∣∣∣
√

â(ω)

b̂(ω)
− ϕ̂(ω)√

â(ω)

∣∣∣∣∣
2

. (6)

Here f̂(ω), ϕ̂(ω), b̂(ω), and â(ω) are the Fourier transforms of
f(x), ϕ(x), ϕ(k), and ϕ(k) ∗ ϕ(−k), respectively.

If f(x) is not bandlimited, then η is an average measure of the
error over all possible shifts of the sampling set, i.e., fn = f(n +
τ), where τ ∈ [0, 1]. For both bandlimited and nonbandlimited
cases, η provides a good characterization of the interpolation error.

3.2. Order of Approximation

When the sampling step T is small, the behavior of the interpo-
lation error can be characterized by the approximation order L of
the interpolation kernel ϕ(x). An interpolation kernel has approx-
imation order L if [7]:

ϕ̂(2πk) = δ[k], k ∈ Z;

ϕ̂(N)(2πk) = 0, k ∈ Z, N = 1, . . . , L − 1,
(7)

where ϕ̂(N)(ω) is the N th derivative of the Fourier transform of
ϕ(x). For such a kernel, the interpolation error decreases like T L

[8], i.e.,

‖f(x) − fT
int(x)‖ ≤ CLT L‖f (L)(x)‖ as T → 0, (8)

where CL is a known constant, f (L)(x) is the Lth derivative of
f(x), and fT

int(x) is an interpolated version of f(x) from the sam-
ples f(nT ), obtained by (1).

Uniform B-splines have order L = n + 1, which is the max-
imal for piecewise-polynomials of degree n. Although, the ap-
proximation order of nonuniform B-splines, which we define in
the next section, is zero, they can provide good results for T � 0.

4. NONUNIFORM B-SPLINES

A B-spline Nn(x) of degree n is a piecewise polynomial with
n + 1 pieces that are smoothly connected together. The joining
points of the polynomials are called knots. For a B-spline of degree
n, each segment is polynomial of degree n. The special case of B-
splines with uniform knots was studied extensively by Unser et
al. [3]. Here, we will consider B-splines with nonuniform knots,
which are defined as [9]

Nn(x) = (xn+1 − x0)

n+1∑
i=0

(xi − x)n
+∏n+1

l=0,l�=i(x − xl)
, (9)

where {xi}n+1
i=0 are the knots with xi < xi+1 and

(xi − x)n
+ =

{
(xi − x)n, xi � x;
0, xi < x.

(10)

We see from (9) that Nn(x) > 0, and Nn(x) = 0 outside the
region [x0, xn+1]. We define the support of Nn(x) as W =
xn+1 − x0. As two special cases of (9), the B-spline of degree
0 is given by

N0(x) =

{
1, x0 � x < x1;
0, otherwise,

(11)

and the B-spline of degree 1 is given by

N1(x) =

⎧⎨
⎩

x−x0
x1−x0

, x0 � x < x1;
x2−x
x2−x1

, x1 � x < x2;

0, otherwise.
(12)

These two functions correspond to zero-order-hold and linear in-
terpolation functions, and both satisfy the basic interpolation prop-
erty. Examples of B-splines of degrees 0 to 3 with knots chosen
arbitrarily are shown in Fig. 1.
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Fig. 1. Nonuniform B-splines of degree 0 to 3.

An important property of the B-spline in the context of inter-
polation, is that it’s derivatives are continuous up to order (n − 1)
at the knots. We can also see in Fig. 1 that B-splines of degree
greater than one are very smooth functions, which makes them at-
tractive as interpolation kernels. The B-spline can be computed
recursively as [10]

Nn(x) =
x − x0

xn − x0
Nn−1

0 (x) +
xn+1 − x

xn+1 − x1
Nn−1

1 (x), (13)

where Nn−1
0 (x) and Nn−1

1 (x) are B-splines of degree n− 1 with
knots {xi}n

i=0 and {xi}n+1
i=1 respectively. Applying (13) n times,

a B-spline of degree n consists of n + 1 polynomial pieces, each
of degree n:

Nn(x) =

n∑
i=0

n∑
k=0

cikxkN0
i (x), (14)

where N0
i (x) is a B-spline of degree 0 with knots xi, xi+1. The

Fourier transform of N0
i (x) is

N̂0
i (ω) = e−jωsi2aisinc(aiw), (15)

where ai = (xi+1 − xi)/2 and si = (xi+1 + xi)/2. Using the
fact that

xkf(x)
Fourier←→ jk dk

dωk
f̂(ω), (16)

together with (14) and (15), we conclude that the Fourier transform
of a nonuniform B-spline of degree n is

N̂n(ω) =

n∑
i=0

n∑
k=0

2aicikjk dk

dωk
{e−jωsisinc(aiw)}. (17)
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To prevent phase degradation, it is desirable to have a symmet-
ric interpolation kernel. To guarantee that the B-spline Nn(x) is
symmetric, in what follows we choose the knots {xi}n+1

i=0 to be
symmetric, i.e., xi = −xn+1−i.

Another important property of the interpolation kernel is its
support W . Most of the piecewise-polynomial interpolation ker-
nels, among them uniform B-splines, have support W = n + 1,
where n is their degree [1]. To compare performance of nonuni-
form B-splines to other interpolation kernels we fix its support to
W = n + 1. This choice automatically places the first (x0) and
the last (xn+1) knots at −W/2 and W/2, respectively.

Examples of symmetric B-spline functions of degree 3 are pre-
sented in Fig. 2.
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Fig. 2. Cubic B-splines of support W = 4 with |x1| = 0.5,
|x1| = 1 (corresponding to a uniform B-spline), |x1| = 1.5, and
x3 = −x1.

5. INTERPOLATION WITH NONUNIFORM B-SPLINES

In this section, we analyze the use of a nonuniform B-spline Nn(x),
defined by (9), as an interpolation kernel. We compare the perfor-
mance of nonuniform B-splines with given degree n and support
W , with uniform B-splines.

5.1. Error Kernel Analysis

To evaluate the interpolation error, we use the error kernel (6).
Eint(ω) of several B-splines functions of degree 3 are shown in
Fig. 3. We can see that below the Nyquist frequency w = π,
the kernel is the smallest for |x1| = 1.5. This suggests that the
squared-norm error for interpolation of bandlimited functions will
be smaller when using a B-spline with |x1| = 1.5 than for the other
presented in the figure, including the uniform B-spline. When in-
terpolating a signal that is not bandlimited, i.e., its spectrum in-
cludes high frequency components (above w = π), a B-spline
with |x1| = 0.5 can provide better interpolation quality.

To choose the B-spline interpolation kernel, we first calcu-
late the interpolation error η for different B-splines, with certain
spectrum models f̂(ω). Then, among B-splines with the same
degree n and support W , we choose the one with optimal knot
placements, that results in the highest SNR value, where SNR =
10 log10(1/η2). The analysis for different signal models is pre-
sented in Sections 5.3 and 5.4.
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Fig. 3. Eint(ω) for cubic B-splines with |x1| = 0.5, 1, and 1.5.

5.2. Approximation Order Analysis

Using (7), we can show that the approximation order of nonuni-
form B-splines is zero, except for a few special cases among them
uniform B-splines, whose approximation order is L = n+1. As a
result, the uniform B-splines will perform better than nonuniform
B-splines for small values of T .

There are many practical applications where data can not be
sampled at a given rate. Furthermore, when dealing with q-di-
mensional signals, to save computations and storage space which
increase exponentially like (1/T )q , we are typically interested in
large values of T . In such cases, the approximation order L is not
a good criterion for error characterization.
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Fig. 4. Error curves for the interpolation of f(x) = −xe−x2
with

cubic B-splines for |x1| = 1, 1.4, and 1.8.

The behavior of the error as a function of the sampling step
T is shown in Fig. 4, where a scaled first derivative of a Gaus-
sian was used as a test function. The squared error was obtained
by numerical integration after interpolating with a B-spline. The
solid curve corresponds to the interpolation with a uniform cubic
B-spline. As predicted by (8), in this case the interpolation error
decreases like T 4 as the sampling step tends to zero. Since the
order of approximation of two other B-splines used in the example
is zero, their interpolation error decreases slowly for small values
of T . However, when the sampling step T grows, the interpola-
tion error is smaller when using the nonuniform B-splines. The
B-spline with |x1| = 1.8 achieves 7.4 dB improvement over the
uniform B-spline, when the sampling step is T = 1.
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5.3. Interpolation of Bandlimited Signals

To comply with Nyquist sampling theory we assume that the origi-
nal CT signal f(x) is bandlimited to [−π, π]. We also assume that
it has a constant-value power spectrum, when for other spectrum
models we obtained similar results. In this case, the squared-norm
interpolation error is obtained by integrating the error kernel itself
(5). The SNR results of these integrations for different nonuni-
form B-splines as a function of the knot placements are presented
in Fig. 5. The top two figures corresponds to symmetric B-splines
of degree 2 (left) and 3 (right). B-splines of degree 4− 5 (bottom)
have two knots (x1 and x2) which can be changed under the re-
striction that |x1| > |x2|. In these two bottom figures lighter tone
corresponds to higher SNR.
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Fig. 5. Performance of symmetric B-splines of degree 2 (top-left)
to 5 (bottom-right) as function of the knot placement, when inter-
polating a bandlimited signal with constant spectrum.

In Table 1, we summarize the results for nonuniform symmet-
ric B-splines of degrees 2 to 7. The knot placement maximizing
the SNR is given in the table together with the optimal SNR value.
We also present the SNR values for interpolation with uniform B-
splines. For cubic B-splines, which are widely used in practice,
there is an improvement of 4 dB over the uniform B-spline.

Table 1. Optimal Knot Placement of Nonuniform B-Splines for
Interpolation of Bandlimited Signals with Constant Spectrum

B-Spline Knot Placement SNR [dB]
Degree |x0| |x1| |x2| |x3| Optimal Uniform

2 1.5 0.99 14.47 12.12
3 2.0 1.73 17.17 13.15
4 2.5 2.49 0.67 19.50 14.18
5 3.0 2.99 1.41 20.19 14.94
6 3.5 3.49 2.54 0.06 23.31 15.62
7 4.0 3.97 3.29 1.21 24.39 16.19

Simulation results, where a CT signal f(x) is randomly gen-
erated and sampled at the Nyquist rate, show an improvement in
interpolation error when interpolating with the optimal B-splines,
which are in general nonuniform.

5.4. Interpolation of Images

In the multidimensional case, to reduce the computational load, we
assume that the interpolation kernel is separable.

A common model to describe the transform of images is the
Markov model, in which the image f(x) is assumed to satisfy∫ ∞
−∞ f(x)f(x + τ)dx = ρ−|τ |, with ρ = 0.9 [11]. In this case

|f̂(ω)|2 =
−2 ln(ρ)

ω2 + (ln(ρ))2
. (18)

Substituting (18) into (5) and integrating the error for different B-
splines of degree 3, we found that |x1| = 0.78 is the optimal knot
placement and its SNR is 14.82 dB, which is just 0.1 dB more than
the SNR of a uniform B-spline.

In order to obtain a quantitative comparison of different cubic
B-splines, we magnify an image by a factor of 2. Since the re-
sult should be compared to the original image, the magnification
operation was applied to a subsampled version of the original im-
age. For images whose spectrum include high frequencies, i.e.,
correspond to the Markov model (18), the average improvement
achieved with the optimal B-spline over the uniform B-spline is
0.1 dB (which complies with the theory). For smooth images, with
spectrum concentrated mostly around ω = 0, the uniform B-spline
provides better results due to its high approximation order.
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