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ABSTRACT

Typical image processing applications use linear interpola-
tion or piecewise cubic interpolation for resampling of im-
ages. These are popular since the interpolation kernels are
small and the results are acceptable. However, since the
frequency domain characteristics of the interpolation filters
are not good, two effects usually appear and cause a notice-
able degradation in quality of the image. The first is jagged
edges and the second is low frequency modulation of high
frequency components such as the sampling noise. Both
effects result from aliasing. Enlargement of an image by a
rational factor of �L�M� is represented by first interpolating
the image on a grid L times finer than the original sampling
grid, and then resampling it every M grid points. While the
usual treatment of the aliasing is carried out by analyzing
the interpolation filter in the frequency domain, this paper
suggests analyzing the aliasing effects using a polyphase
representation of the interpolation process. It turns out that
the aliasing effects are caused by differences between the
polyphase filters. We therefore define the average ampli-
tude function and use it to measure the aliasing expected
from the interpolation filter.

1. INTRODUCTION

The essence of this paper is about introducing a new effi-
cient and simple approach for analyzing aliasing effects in
enlargements, caused by the interpolation filter.

we consider the case where a separable interpolation
kernel is used for resampling images, i.e., changing the num-
ber of pixels in the image. We concentrate on enlargement
of images by a rational factor of L�M . Since the interpola-
tion we discuss is separable, we conduct the analysis in one
dimension and use the time and frequency domain. In sec-
tion 2 we discuss the polyphase implementation of resam-
pling. In section 3 we discuss the aliasing effects created by
resampling. In section 4 we present the polyphase analysis
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for estimating the aliasing expected from the interpolation
filter.

2. RESAMPLING FORMULATION

In this section, we first introduce the resampling scheme in
a similar manner as is discussed in [1]. This is followed by
a polyphase representation as in [2], which is usually used
in order to reduce computations. In our case this scheme is
used for investigating the aliasing effects.

The resampling scheme is shown in Figure 1. The se-
quence x�n� is input into an expander by L. Its output x I �n�
is fed to the interpolation filter, having an impulse response
h�n�. Note that in each group of L consecutive samples of
xI �n�, there are L� � zeros. The interpolation filter ”adds”
the missing samples and so produces the interpolated yI �n�.
The interpolated signal yI �n� is then decimated by a factor
of M to produce the output signal y�n�. A detailed analysis
of this scheme appears in many textbooks, e.g., [1], [2].

h�n� �M
�
�
�
��L

� ���
y�n�yI �n�xI �n�x�n� �

�
�
�

Fig. 1. Resampling by a rational factor of L�M

It is easy to show, that the expander and the interpola-
tion filter can be replaced with the scheme depicted in Fig-
ure 2. This scheme, called a polyphase representation, is
more efficient than the original scheme, since the number
of multiplications is reduced by a factor of L. A polyphase
representation is based on splitting h�n� to L filters hl�n�
where l � �� �� � � � � L � �. The filter hl�n� is found by
decimation, in a factor of L, of h�h�, shifted by l:

hl�n� � h�nL� l� (1)

Although there are more efficient schemes, [2], this scheme
is perfectly suitable for our analysis.

II - 5610-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



x�n�

�L

�
�
�
��L

�
�
�
��L

�
�
�
�

�
�
�
�

���

�

� �

�

�

�

�

�

�

�

� �

hL���n�
yL���n�

z��

z��

z��

y��n�
h��n�

yI �n�y��n�
h��n�

�
�
�
�

Fig. 2. The interpolation part using polyphase filters

3. ALIASING IN ENLARGEMENTS

In image processing, we prefer to have a small number of
non zero coefficients in the sequence h�n� , i.e., a short se-
quence. This results with a short processing time. Common
interpolation functions are: zero order hold, linear interpo-
lation [3], and piecewise cubic interpolation, [4],[5]. These
functions span along a small number of samples, resulting
with short sequences hl�n�. These interpolation filters were
determined according to some ”smoothness” requirements
in the time domain. Unfortunately, H���, The Discrete-
Time Fourier Transform (DTFT) of such interpolation fil-
ters is not bandlimited to � � ����L� ��L�, and so we have
aliasing effects after the decimation by M .

The conventional approach is therefore to improveH���
so the aliasing is reduced. However, it is difficult to evalu-
ate the influence of changingH��� on the aliasing, looking
at H��� directly. In this paper, we suggest a different ap-
proach to analyze the aliasing. We claim that the aliasing
effects are easily and better understood when the polyphase
representation described earlier is used. We consider the L
outputs of the L hl�n� polyphase filters as L different se-
quences, denoted yl�n�, and analyze them separately.

To demonstrate the reasoning behind our approach we
chose to use the linear interpolation. The interpolation func-
tion h�n� is given by:

h�n� �

��
�

�� jn
L
j � � jn

L
j � �

� � � jn
L
j

(2)

The hl�n�-s are calculated from h�n� using equation(1).
In Figure 3, we show the absolute value of the DTFT of

the filters hl�n�, denotedHl���, for l � �� � � � � �. It is clear
that these L filters have different frequency responses. This
is so since the hl�h� are decimated versions of h�n�, shifted
by l. Each of them is therefore affected differently by the
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Fig. 3. jHl���j-s of linear interpolation (L � �)

decimation (from h�n� to hl�n�), and the aliasing in each of
them, caused by that decimation, results with a consider-
ably different shape of jHl���j for different l-s. Thus, the L
signals yl�n� are influenced differently by the filters H l���.

Actually, the different shapes of the Hl���-s is the rea-
son of having aliasing effects .

The differences between the jHl���j-s cause two main
effects which are easily noticeable in images, and easily un-
derstood by the polyphase approach. One is jagged edges
and the second is noise modulation. Let us explain the ef-
fects using Figures 2 and 3.

We first discuss the noise modulation. Say we have an
image with a constant level. During the image acquisition,
a wide band noise is added to that constant level by the A/D
circuit or the sensor noise. When enlarging the image by a
factor of say �	��
, i.e., L � �	 and M � �
, we actually
use all of the 16 filters hl�n� to calculate �	 consecutive out-
put samples ”from” an interval of �
 consecutive input sam-
ples and their neighbors. Thus, the output samples are taken
from �	 images (sequences) yl�n� that are produced each by
a different filter Hl���. Since those are different, we get
a low frequency modulation of the noise. In Figure 4, we
demonstrate this phenomenon on a small part of the Lena
image to which we added white Gaussian noise prior to en-
larging it by �	��
 using linear interpolation. (The image
was sharpened afterwards, in order to intensify the modula-
tion effect, so it is easy to observe in print).

The other noticeable effect, is jagged edges. Say we en-
large an image by a factor of �, i.e., L � � and M � �.
In this case the even samples of the output signal are du-
plicates of the input samples, while the odd output samples
are ”interpolated” by averaging the two adjacent input sam-
ples. Thus, the high frequency content of the odd pixels is

II - 562

➡ ➡



20 40 60 80 100 120

20

40

60

80

100

120

140

Fig. 4. Noise modulation produced by linear interpolation,
(L � ��,M � ��)

blurred. In case we have an area in the image in which we
have high frequencies, e.g., edges, this difference between
the odd and even pixels is noticeable. The even pixels have
more contrast than the odd blurred pixels. This is easily
seen in edges that are almost horizontal or vertical, as in
Figure 5 below. This figure is an enlargement of an image
by a factor of 2, in the x and y directions, carried out by
linear interpolation.

Again, the two effects described above are caused by
the very same reason, differences between the interpolation
filters Hl��� .

4. POLYPHASE ANALYSIS OF ALIASING

We could define the desired interpolation filter h�n� by spec-
ifying its frequency response H���. In case it is bandlim-
ited to ����L� ��L�, the L polyphase filters, Hl���, have
the same amplitude response, denoted A���, and their fre-
quency responses are given by

Hl��� � A���ej�l (3)

Since all of the polyphase filters have the same amplitude
and the appropriate phase, we expect no aliasing. It is easy
to see, that in such a case, H��� is given by

H��� �

�
L �A��L� � � j�j � �

L
� otherwise

(4)

thus, it is really band limited, and so, no aliasing occurs.
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Fig. 5. Jagged edges in enlargement by 2 (L � 	, M � �)
using linear interpolation

We here suggest a measure, the Interpolation Error In-
dex, denoted F �L�

� , for the quality of an interpolation filter
h�n�. The interpolation error index is defined as the average
deviation of Hl��� from the desired filter of equation (3):

F
�L�
� �

�

	�L

L��X
l��

Z �

��

jA���ej�l�L �Hl���j
�d� (5)

We denote the amplitude A��� that brings the error in-

dex F �L�
� to a minimum for a given set of filters Hl���, by

A
�L�
av ���. It is easy to see, by differentiating F �L�

� in respect

to A��� that A�L�
av ��� is given by

A�L�
av ��� �

�

L

L��X
l��

Hl���e
�j�l�L (6)

We refer to A�L�
av ��� as the average amplitude function of

the polyphase filters. It is easy to see that when h�n� is sym-

metric, i.e., h�n� � h��n�, then A�L�
av ��� is real.

Using A�L�
av ���, we define the Aliasing Index F �L�

a as

F �L�
a �

�

	�L

L��X
l��

Z �

��

jA�L�
av ���ej�l�L �Hl���j

�d� (7)

We also define the Amplitude Index, F �L�
d ���, which

indicates the deviation of the average amplitude function
A
�L�
av ��� from the desired amplitude functionA���, as

F
�L�
d �

�

	�

Z �

��

jA����A�L�
av ���j�d� (8)

It is easy to see that these indices satisfy

F
�L�
� � F �L�

a 
 F
�L�
d (9)

II - 563

➡ ➡



We now have separate measures for the aliasing and for the
deviation of the average amplitude from the desired ampli-
tude function.

So, now we can be more accurate and state that the dif-
ference of the Hl���-s, (with a phase factor of e�j�l�L),

from A
�L�
av ���, the average of the polyphase filters, is the

reason of having aliasing effects.
F
�L�
a measures the difference from A

�L�
av ���, but dif-

ferent interpolation filters have different A�L�
av ���-s. Thus,

for a correct comparison of interpolation filters, we should
”equalize” or ”normalize” the interpolation filter so that the
normalized polyphase filters have A�L�

av ��� � �. Therefore,

we define the Normalized Aliasing Index, F �L�
A as

F
�L�
A �

�

��L

L��X
l��

Z �

��

j
A
�L�
av ���ej�l�L �Hl���

A
�L�
av ���

j�d�

(10)

This is equivalent to a series LPF equalizer, with a fre-
quency response of ��A

�L�
av ��L� for j�j � ��L, which

equalizes the average amplitude to 1.
Let us apply the Normalized Aliasing and the Ampli-

tude Indices to a few common interpolation functions. We
assume that the desired amplitude function A��� equals 1,
as in an ideal LPF, and do the comparison for L � �.

We start with the simple zero order hold interpolation,
also called nearest neighbor interpolation, and given by

h�n� �

��
�

� ���	 � n
L � ��	

� otherwise
(11)

For A��� � �, we find F
���
A � ����
�, F ���

d � ����
�

(F ���
� is 0.2599).
For linear interpolation, also called a first order hold

interpolation, described by equation (2), we have F ���
A �

������, F ���
d � ������ (F ���

� is 0.1182).
For the 4 points cubic piecewise interpolation of [4],[5],

also called third-order cubic interpolation, [6], we findF ���
A �

������, F ���
d � ����� (F ���

� is 0.0779).
Finally, for the 6 points cubic piecewise interpolation of

[5], also called fourth-order cubic interpolation, [6], we find
F
���
A � ����	, F ���

d � ������ (F ���
� is 0.0635).

From looking at the DTFT-s of those interpolation fil-
ters and from applying them to actual images, it seems that
the Normalized Aliasing Index is a good measure for esti-
mating aliasing effects, while the Amplitude Index is a good
measure for high frequency degradation.

When two interpolation filters have equal Normalized
Aliasing Indices, this suggests that they produce a similar
amount of aliasing effects. Therefore, we may use the Nor-
malized Aliasing Index for comparing aliasing of interpola-
tion filters. Note that when comparing interpolation filters,

we should give the appropriate attention to both the Nor-
malized Aliasing Index and the Amplitude Index.

5. CONCLUSION

Aliasing in enlargement of images has two main effects, pe-
riodic modulation of noise and jagged edges. The classical
solution to this problem is to improve the interpolation fil-
ter. However, we lack a systematic analysis of the quality
of that LPF in terms of aliasing effects. In this paper we
introduced a new approach for aliasing analysis in enlarge-
ments, based on looking at the polyphase representation of
the interpolation process. We explained that aliasing effects
result from differences between the frequency responses of
the polyphase filters, and defined the Normalized Aliasing
Index, which measures the aliasing expected from an in-
terpolation filter based on deviation from the average am-
plitude of the polyphase filters. We also defined the Am-
plitude Index, measuring the deviation of the interpolation
filter from the desired amplitude response. These indices
were found to agree with the aliasing and the high frequency
degradation we have when applying common interpolation
filters on images.

Since the aliasing effects result from the differences be-
tween the frequency responses of the polyphasefilters, equal-
izing those filters reduces the aliasing. The new measures
introduced in this paper can be used for evaluation of the
quality resulting after such equalization.
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