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ABSTRACT

This paper solves the problem of designing successive 
transmit pulses to minimize the mean squared error of 
deconvolution in colored noise. The power spectral 
densities of the signal and noise are known a priori. In the 
special case of white noise, the analytical solution can be 
interpreted as the “water-filling” principle for the 
distribution of transmitted spectral energy. Numerical 
simulation of a simple example with exponentially 
correlated target signal and white noise illustrates the 
benefits of using adaptively designed transmit signals. 

1. INTRODUCTION 

Deconvolution using Wiener filters has broad applications 
in communications (channel estimation and equalization), 
radar and sonar (target imaging), image processing 
(deblurring and restoration), etc. The Wiener filter is 
optimal in the minimum mean square error (MMSE) 
sense. This optimal deconvolution solution can be found 
in many statistical signal processing textbooks (e. g. [1]), 
however, nearly all assume a fixed and known convolution 
kernel. In applications such as radar and sonar, the 
convolution kernel is the transmitted waveform, while the 
signal to be deconvolved is the target range profile. 
Therefore adjusting the convolution kernel (subject to 
certain constraints) in order to achieve the best 
deconvolution is feasible, at least conceptually. 

There has been extensive work on the design of 
transmit signal which optimizes detection performance of 
point target in signal-dependent interference and ambient 
noise [2,3,4,5]. A recent work by Pillai et. al. [6] 
considered non-point targets with the objective of 
maximizing the signal to interference ratio (SINR). None 
have formulated the problem as minimizing the estimation 
error of target profile. Our work here uses the Wiener 
filter to reconstruct the target profile in the MMSE sense, 
and the transmit signal is optimized (subject to pulse 
energy constraint) to further minimize the mean square 
error achieved by the Wiener filter. Our model assumes a
priori knowledge of the target and noise in the form of 
their power spectral densities (PSD), or equivalently their 
autocorrelation functions. We further extend our work to 
multiple pulse transmission and deconvolution in that, 

after each pulse, the a posteriori PSD is calculated and 
used as the a priori PSD of the next pulse. This is in 
contrast to traditional approach of transmitting multiple 
identical pulses, and will reduce the deconvolution error 
more rapidly in low SNR situation. 

In the remainder of this paper, we shall present 
analytical derivations of optimal transmit signal design for 
single and multiple transmissions, accompanied by 
numerical simulations that demonstrate the advantages of 
the optimal signals over traditional broadband signals. In 
the final section, we discuss limitations and possible 
extensions of the current work, and a potential relationship 
of this work to a result in information theory. 

2. ANALYTICAL SOLUTION FOR SINGLE PULSE 

Our model is the standard linear time invariant system 
with additive Gaussian noise: 

[ ] ( )[ ] [ ]y n h x n v n= ∗ +  (1) 

where [ ]y n  is the received signal, [ ]h n   is the transmit 

signal to be designed, [ ]x n  is the target signal with PSD 

( )XXS ω , and [ ]v n  is noise with PSD ( )VVS ω . All signals 

are zero mean Gaussian. Our task is to design [ ]h n  to 

achieve the minimum mean squared error between [ ]x n

and the ˆ[ ]x n , which is estimate of [ ]x n . To make the 

problem well-posed, we impose the unit energy constraint 
on [ ]h n . Therefore the design problem is mathematically 

stated as: 

{ }2

[ ]
ˆmin [ ] [ ]

h n
E x n x n−  (2) 

subject to 2
[ ] 1

n

h n
∞

=−∞

=�  (3) 

In the following, we solve this optimization problem in 
the frequency domain. We know that for a fixed [ ]h n  the 

MMSE estimator is the (non-causal) Wiener filter: 
*
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and the mean squared error (MSE) attained by the Wiener 
filter is [7] 
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Let 2
( ) ( )G Hω ω= . The constrained optimization problem 

is then transformed to 
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and ( ) 0G ω ≥  (8) 

The Kuhn-Tucker (first order necessary) conditions [8] for 
this minimization problem are that there exist constant λ
and function ( ) 0µ ω ≤  such that:  
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( ) ( ) 0

2
G d

π

π
µ ω ω ω

π −
=�  (10) 

Two remarks are due here. First, it is easy to verify that 
constraints (7) and (8) are convex and the objective 
function (6) over the constraint set is also convex. 
Therefore the Kuhn-Tucker conditions are also sufficient. 
Second, since ( ) 0µ ω ≤  and ( ) 0G ω ≥ , equation (10) 

implies ( ) ( ) 0Gµ ω ω = , thus for every ω  either ( ) 0µ ω =
or ( ) 0G ω = . From (9) we obtain 
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VV VV

XX
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S

ω ωω
λ µ ω ω

= −
+

 (11) 

where λ  and ( )µ ω  are to be determined from the 

constraints. Substituting (11) into (7), and noting that 
( ) 0µ ω =  whenever ( ) 0G ω ≠ , we have 
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where ( )u ⋅  is the unit step function. Eq. (12) should be 

used to numerically determine λ . After λ  is determined, 
the solution for the optimal ( )G ω  is: 
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( )

( ) ( )
VV VV XX

XX VV
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G u

S S

ω ω ωω λ
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The mean square error achieved by this solution can then 
be obtained by substituting (13) into (5): 
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It can be easily shown that 

{ }21
( ) [ ]

2 XXS d E x n
π

π
ε ω ω

π −
< =�  (15) 

which is expected since deconvolution should reduce the 
uncertainty of the target signal. Note that the optimal 
transmit signal is given in terms of its spectral power. Any 
time domain signal [ ]h n  that satisfies 2

( ) ( )H Gω ω=  is an 

optimal solution. This is reasonable since the target [ ]x n  is 

characterized only by its PSD ( )XXS ω , therefore only the 

spectral power of the excitation pulse matters.  

Now let us consider the special case of white noise, i.e. 
2( )VVS ω σ= . The solution in (13) can be rewritten as 

2 2

( )
( ) ( )XX XX

G C u C
S S

σ σω
ω ω

�  � �
= − −� �� �

� � � �
 (16) 

where 2 /C σ λ= , and C should be determined by the 
energy constraint in (7). The solution in (16) can be 
interpreted using the “water-filling” analogy: Imagine a 
“spectral reservoir” with a bottom profile of 2 / ( )XXSσ ω .

If we fill this “reservoir” with the available energy “fluid”, 
then the “fluid” will seek a constant level C and provide 
the optimal spectral energy distribution (figure 1). 
Frequencies with high 2 / ( )XXSσ ω  values (low SNR) 

receive less and possibly no energy. On the other hand, if 
( )XXS ω  is white, then Eq. (16) implies ( )G ω = constant, 

indicating that a broadband (spectrally flat) pulse (e.g. a 
chirp) is the optimal transmit signal in this case. 

-3 0 3

σ2/S
xx

(ω)

G(ω)

C

ω (rad)

Figure 1: Water-filling distribution of spectral energy 

3. DESIGN OF MULTIPLE-PULSE SEQUENCE 

Suppose we send a sequence of N pulses ( )[ ]kh n ,

1, 2, ,k N= �
, to estimate the target signal. The traditional 

approach is to send N identical pulses, resulting in a final 
MSE that is 1/N of that using only one pulse. However, 
one could view this as a successive estimation problem, 
where after each pulse the a posteriori statistics of the 
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target signal is calculated and then used as the a priori
statistics for the design of the next pulse. In this section we 
propose such an algorithm to design the adaptive pulse 
sequence. Specifically, let ( )[ ]kh n  and ( )[ ]ky n  be the k’th

transmit and received signal respectively, i.e., 
( ) ( ) ( )[ ] ( )[ ] [ ]k k ky n h x n v n= ∗ + , and let ( )ky  be the vector 

notation of ( )[ ]ky n . Define the residual target signal 
( )[ ]kx n  recursively as (0)[ ] [ ]x n x n= ,
( 1) ( ) ( )ˆ[ ] [ ] [ ]k k kx n x n x n+ = − , where ( )ˆ [ ]kx n  is the MMSE 

(Wiener filter) estimate of ( )[ ]kx n  given 1k +  received 

pulses { }( 1) ( ) (1), , ,k k+y y y�

. It is easy to see that for any k

we have 
1

( ) ( )

0

ˆ[ ] [ ] [ ]
k

k i

i

x n x n x n
−

=

= + � , and the MMSE estimate 

of [ ]x n  given k  received pulses is 
1
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0

ˆ ˆ[ ] [ ]
k

i

i

x n x n
−

=

= � . Let us 
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( ) ( ) ( ) ( )

0

ˆ[ ] [ ] [ ]
k

k k k i

i

z n y n h x n
−

=

= − ∗�  (17) 

then ( ) ( ) ( ) ( )[ ] ( )[ ] [ ]k k k kz n h x n v n= ∗ + . The estimate of 
( )[ ]kx n  given ( )[ ]ky n  is the same as given ( )[ ]kz n . Now we 

can design ( )[ ]kh n  to optimally estimate ( )[ ]kx n  using 

Wiener filter. Let ( )( )k
XXS ω  be the a priori PSD of ( )[ ]kx n

before receiving the 1k + ’th pulse, or equivalently the a
posteriori PSD given k  received pulses. In particular, 

( ) ( )(0)
XX XXS Sω ω= . Then the k+1’th pulse should be 

designed by, according to (13), 
2( )
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 (18) 

After receiving the k+1’th pulse, the MMSE estimate of 
( )[ ]kx n  is obtained by Wiener filter. The residual error 

signal ( 1)[ ]kx n+  has PSD [7]: 
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k
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where 2( ) ( )( ) ( )k kG Hω ω≡ . Therefore, Eqs. (18) and (19) 

can be used to recursively compute ( )( )k
XXS ω  and ( ) ( )kG ω .

The complete adaptive transmit signal design and 
deconvolution algorithm can then be summarized as: 

1. Initialize. 1k = , (0)[ ] [ ]x n x n= , ( ) ( )(0)
XX XXS Sω ω= .

2. Design ( ) ( )kG ω  by (18), where ( )kλ  is determined by 

solving ( )1
( ) 1

2
kG d

π

π
ω ω

π −
=� .

3. Construct any ( )[ ]kh n  such that 2( ) ( )( ) ( )k kG Hω ω= .

Transmit ( )[ ]kh n  and receive ( )[ ]ky n . Compute ( )[ ]kz n

by (17). 

4. Compute ( 1)ˆ [ ]kx n−  by Wiener filtering ( )[ ]kz n  with 

( )[ ]kf n , where 
*( ) ( 1)

( )
( ) ( 1)

( ) ( )
( )

( ) ( ) ( )

k k
k XX

k k
XX VV

H S
F

G S S

ω ωω
ω ω ω

−

−=
+

 is 

the frequency response of the Wiener filter.  

5. Compute 
1

( )

0

ˆ ˆ[ ] [ ]
k

i

i

x n x n
−

=

= � . This is the MMSE estimate 

given k received pulses. 

6. Compute residual signal PSD ( ) ( )k
XXS ω  by (19). 

7. Compute the MSE given k received pulses. 
( ) ( )1

( )
2

k k
XXS d

π

π
ε ω ω

π −
= � .

8. 1k k= + . Go to 2. 

If the noise is white with 2( )VVS ω σ= , then Eq. (19) 

leads to 
2 2

( 1)
( 1) ( )

( )
( ) ( )

k
k k

XX XX

G
S S

σ σω
ω ω

+
+ = +  (20) 

This equation has the simple solution 
2 2 1

( )
( )

0

( ), 1
( ) ( )

k
i

k
iXX xx

G k
S S

σ σ ω
ω ω

−

=

= + ≥�  (21) 

It immediately follows that  

( )
( )

2
( )

1
( ) 2

0

( )
( )

XXk
XX k

i
XX

i

S
S

S G

σ ω
ω

ω ω σ
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This is the same result as deconvolution using a single 

pulse whose spectral power is 
1

( )

0

( ) ( )
k

i

i

G Gω ω
−

=

= � . Thus we 

conclude that 
1

( )

0

( )
k

i

i

G ω
−

=
�  “water–fills” the “reservoir” of 

2 / ( )XXSσ ω  with total energy k.

4. NUMERICAL EXAMPLE 

In this section we give a numerical example of 
deconvolving an exponentially correlated target signal in 
white noise.  The signal has autocorrelation function 

[ ] n
xxr n α= , 1α < , corresponding to a PSD 

2

2

1
( )

1 2 cosXXS
αω

α α ω
−=

+ −
 (23) 

The noise is white with PSD 2( )VVS ω σ= .

To illustrate the advantage of using optimally designed 
transmit signal sequence over the classical approach of 
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using multiple identical broadband signals, we plot the 
MSE of the estimate versus pulse number for both 
approaches. Figure 2 shows the results for different values 
of α  and 2σ .
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Figure 2: MSE reduction for different values of α  and 2σ .

From these results we can make the following 
observations. First the MSE of the optimally designed 
transmit signal is always smaller than that of a broadband 
signal, as expected. Next, the performance gain is higher 
for bigger 2σ  (lower SNR). This is reasonable since at 
very high SNR, the optimal transmit signal approaches a 
broadband signal. Thirdly, the performance gain is higher 
for α  closer to one. This is because small α  implies less 

correlated target signal and therefore whiter PSD. If the 
target signal PSD is completely white, then the optimal 
transmit signal is again a broadband white signal, and 
there is no advantage of the optimally designed signal.  

5. CONCLUSIONS 

We have derived an analytical solution for designing 
transmit signal to minimize the deconvolution mean 
square error using Wiener filter. In the case of white noise, 
the solution is the “water-filling” distribution of the 
spectral energy of the transmit signal. An adaptive pulse 
selection scheme is proposed to design a pulse sequence 
that successively minimizes estimation error. Numerical 
simulation shows that the optimized transmit signal 
improves estimation performance significantly, 
particularly in low SNR environments. The current 

formulation is limited to non-causal Wiener filter. This is 
fine since in radar and sonar range imaging the 
deconvolution does not begin until the complete echo of a 
transmitted pulse is received. Formulation for causal 
Wiener filter would be interesting but seems significantly 
harder. A possible extension of this work is to include 
additional time domain constraints of the transmit signal, 
such as the length of [ ]h n . Another potential extension is 

application to array design for optimal coherent imaging 
of random media.  

It is well known in communications theory that for 
vector Gaussian channel with white noise, the optimal 
energy distribution maximizing the mutual information 
follows the water-filling principle [9]. This implies that if 
we were to design a transmit signal to achieve the channel 
capacity, given the channel (target signal) PSD, we would 
have obtained the same “water-filling” solution as in (16). 
We believe that this is not a coincidence but rather a more 
fundamental relationship. However, this relationship 
between MMSE deconvolution and channel capacity has 
not been formally established in the literature, and is 
worthy of further theoretical development.  
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