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ABSTRACT

Many signals and statistical distributions are a mixture of
component signals or distributions. Current methods for es-
timating the proportion of each component assume a para-
metric form for the components. We introduce nonpara-
metric methods, based on projections onto convex sets, to
address the many practical cases where parametric models
are not applicable. Comparisons are made with parametric
methods and discussed for special cases where both meth-
ods can be used.

1. INTRODUCTION

A recorded signal is often formed by a mixture of many
signals from several classifiable sources. It is of interest
in various applications to determine the proportion of the
recorded signal that belongs to each class. For instance,
spatial resolution limitations in remote sensing images in-
evitably possess pixels comprising various proportions of
several spectral classes of ground cover [1]. A target of-
ten appears within a single pixel, mixed with its surround-
ings. One may detect the target’s presence, or proportion,
in that pixel using estimates of the target’s spectral distribu-
tion. Another example of mixed signals occurs in network
traffic across a particular node. Several internet applications
exhibit characteristic distributions of packet sizes [2]. The
total distribution of packet sizes across a network node is
the mixture of the distributions of individual applications.
With an accurate estimate of the proportion of each appli-
cation, routers could give precedence to applications with
time sensitive packets such as streaming media to improve
the quality of service (QoS). Unusual network traffic at a
node could indicate a potential security breach.

Previous research estimates class proportions of linearly
mixed signals using the methods of maximum likelihood
(ML) and total least squares (TLS) [3], [4]. However, the
estimation of mixture densities currently assumes the mix-
ture components form classical parametric distributions (i.e.
Gaussian, Poisson, etc.), and the parameters of these distri-
butions are estimated. Practical applications involving mix-
ture densities rarely have components with classical para-

metric distributions. Nonparametric probability distributions
of mixture components may be approximated by histograms
formed from sampled data obtained for each component.
These approximations can be used to estimate the propor-
tion of each component in the recorded mixture if the un-
certainty in the approximation is considered. This paper
introduces the method of mixture density estimation from
histograms using a set theoretic approach discussed in [5].

This paper presents a mathematical description of the
problem. The estimation method of total least squares (TLS)
is reviewed. The method projection onto convex sets (POCS)
is reviewed and formed with a noise set derived from TLS.
Results from experimental data comparing the EM Algo-
rithm with the new method using POCS are provided.

2. DEFINITION OF THE PROBLEM

The problem of interest is to estimate the proportion of each
of the K classes present. To do this, it is necessary to know
the statistical distributions of the various classes. Since the
distributions are nonparametric, these must be estimated from
samples of the classes. We assume that we have K well de-
fined classes and Nk samples of M-vectors from the kth

class
{
ui,k

}Nk

i=1
. Note that each class may have a different

number of samples and the total number is N =
∑K

k=1 Nk

samples. This can be thought of as a training set and the dis-
tribution of each class is estimated from these samples. De-
fine estimates of the mean of each class as s̄k = 1

Nk

∑Nk

i=1 ui,k.
Now consider a mixture of samples from the various

classes. Let si,k be a vector of length M and a member
of the kth class. The linear mixture is the M -vector defined
by

r =
1
N

K∑
k=1

Nk∑
i=1

si,k. (1)

We know that
E

{
r
}

= S̄a

where S̄ =
[
E

{
s1

}
, E

{
s2

}
, · · · , E

{
sk

}]
, sk ∈ Ck and

a =
[
N1

/
N, N2

/
N, · · · , Nk

/
N

]T
. The obvious estima-

tion of a uses the mean of the distributions combined with
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common maximum likelihood (ML) or minimum mean square
error (MMSE) estimators. However, the true contribution
from class k, 1

N

∑Nk

i=1 si,k, is only approximated by
(
Nk

/
N

)
s̄k.

This approximation is accounted for by inserting a perturba-
tion term ∆sk for the estimate of the mean of class k. The
perturbation term ∆sk is given by

∆sk = s̄k − 1
Nk

Nk∑
i=1

si,k,

and the perturbation is assumed to be an unbiased white,
noise random process with variance σ2

ν . However, the true
variance of the mth element of the kth class ∆sk is σ2

ν(m, k)
for 1 ≤ m ≤ M and 1 ≤ k ≤ K. Considering the devi-
ations in the estimates of the mean of each class, the linear
mixture r is more accurately written

r =
(
S̄ + ∆S

)
a, (2)

where ∆S =
[
∆s1, ∆s2, · · · , ∆sk

]
.

Estimation methods that can take the perturbation into
account include total least squares (TLS) and projection onto
convex sets (POCS). MMSE can be formulated to accom-
modate this perturbation, but a solution is difficult. In some
cases, there may be an additional noise added to the mixture
that can be attributed to measurement uncertainty. For this
case we have the model

r = (S̄ + ∆S)a + η, (3)

where η is signal independent noise, usually assumed to be
independent and identically distributed from a zero mean,
white noise random process with variance σ2

η. The methods
that can be used here are the same as for eq. (2). Note we
can use eq. (2) to write

r = S̄a + ∆Sa = S̄a + υ,

where the noise is combined in the term υ. This may permit
approximations that allow signal independent noise.

The nature of this mixture problem imposes constraints
on aK×1. Since a represents proportions of the K classes
in the recorded mixture, the elements of a must sum to one
and lie on the interval

[
0, 1

]
. The vector a is constrained to

the set Sa defined in eq. (4).

Sa =
{

a ∈ �K
∣∣∣ K∑

k=1

ak = 1, ak ≥ 0
}

(4)

When the recorded signal r is a discrete mixture distri-
bution composed of discrete probability distributions con-

tained in the set of vectors
{
sk

}K

k=1
, the elements of r must

sum to one. The vector r represents a M bin probability
histogram.

The TLS method is reviewed. Set theoretic estimation
is presented to solve the TLS problem described by eq. (3)
satisfying the additional constraints in eq. (4).

3. ESTIMATION METHODS

3.1. Total Least Squares

The TLS method minimizes the presence of the perturba-
tions, ∆S and η, to find a solution â to eq. (3). This method
requires that ∆S and η have the same variance. A weighted
TLS method has been proposed when the variances of the
noise sources differ. A solution found with the method of
TLS is presented in accordance with [7].

3.1.1. TLS Solution

The elements r and S̄ in eq. (3) are precisely known. Thus,
a solution to eq. (3) is an approximate solution to

r ≈ S̄a ⇒ S̄a − r ≈ 0. (5)

A solution to this approximation is found by considering the
equation [

S̄; r
] [

a
-1

]
= 0. (6)

The solution
[
âT ;−1

]T
must be in Ker

([
S̄; r

])
. Ker

(
A

)
denotes the nullspace of matrix A. Reduce the rank of[
S̄; r

]
to find a solution in Ker

([
S̄; r

])
. Create

[
Ŝ; r̂

] ≈[
S̄; r

]
by perturbing

[
S̄; r

]
as little as possible.

To do this, define the singular value decomposition (SVD)
of

[
S̄; r

]
as follows [

S̄; r
]

= UΛVT , (7)

where U and V are unitary matrices, and Λ is a diago-
nal matrix ordered by descending singular values {σi}N+1

i=1 .
Given that σN+1 �= 0, the matrix

[
S̄; r

]
has rank N + 1. In

this case, r clearly is not contained in the column space of
S̄. Reduce the rank of matrix

[
S̄; r

]
to N to find a solution

â.
The Eckart-Young-Mirsky theorem provides a matrix

approximation using SVD of eq. (7). Let

Λ̂ = diag (σ1, · · · , σN , 0)

and define
[
Ŝ; r̂

]
= UΛ̂V

T
, the theorem gives the TLS

correction

σN+1 = min
rank([Ŝ;̂r])=N

∥∥∥[S; r] −
[
Ŝ; r̂

]∥∥∥
F

. (8)

Respectively denoting ui and vi as the ith columns of U
and V, we have

[S; r] −
[
Ŝ; r̂

]
=

[
∆Ŝ; η

]
= σN+1uN+1vT

N+1. (9)

The last column of V, vN+1 ∈ Ker
([

Ŝ; r̂
])

, contains the

TLS solution. Scale vN+1 to make its last component −1,
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or [
â
-1

]
=

−1
vN+1,N+1

vN+1. (10)

Thus, the TLS solution is

â =
−1

vN+1,N+1
[v1,N+1, v2,N+1, · · · , vN,N+1]

T
. (11)

The minimum norm total least squares (MN-TLS) solu-
tion shown in [7] is determined from the following

min
∆E,a

‖∆E‖2
F subject to

[
E + ∆E

][ a
-1

]
= 0,

(12)
where EM×(N+1) =

[
S̄; r

]
and ∆EM×(N+1) =

[
∆S; η

]
.

3.2. Projection onto Convex Sets

Previous estimation methods satisfy some of the constraints
known about the signal a. However, the constraints specific
to the problem of mixture densities are not addressed. A
solution to eq. (3) including the constraints in eq. (4) is
presented utilizing sets corresponding to the known charac-
teristics of a. The intersection of these sets provides a set of
feasible solutions rather than a unique solution.

Set theoretic estimation utilizes a priori knowledge of a
signal to generate a feasible estimate [6]. The solution is in
the intersection of a collection of constraint sets. A solution
may be obtained by the well-known method of sequential
projections onto convex sets (POCS) [6]. We need only de-
fine the constraint sets used for this application.

3.2.1. Noise Variance Set

For the noise constraint, the set with regard to the ML resid-
ual definition is modified since S = S̄ + ∆S. Applying
the triangle inequality and the additional noise parameter
σ2

υ modifies the ML residual set to

Sη =
{
a

∣∣∣ ∥∥r − S̄a
∥∥2 ≤ σ2

η + σ2
υ

}
, (13)

where σ2
η = E

∥∥η
∥∥2

and σ2
υ = E

∥∥∆Sa
∥∥2

. Alternatively, as
shown in [5] the set Sη may be defined based on weighted
total least squares (TLS) as

STLS =
{
a

∣∣∣ ∃{
∆S, η

} 
 (
S̄ + ∆S

)
a = r + η,

τ
∥∥∆S

∥∥2

F
+

∥∥η
∥∥2 ≤ ν

}
. (14)

where the parameters τ and ν are determined by statistical
properties of ∆S and η. It was shown in [5] that STLS may
also be defined by

STLS =
{
a ∈ �N

∣∣∣ ∥∥S̄a− r
∥∥2 − ν

τ

∥∥a∥∥2 − ν ≤ 0
}

, (15)

where τ and ν are chosen to satisfy the following

ν = τE
∥∥∆S

∥∥2

F
+ E

∥∥η
∥∥2

τ ≥ E
∥∥η

∥∥2

σN

(
S̄
) − E

∥∥∆S
∥∥2

F

,

(16)
where σN

(
S̄
)

denotes the smallest singular value of S̄.

3.2.2. Other Sets

The set Sa defined in eq. (4) is decomposed into two ap-
propriate sets. The set SΣ defines the summation to one
constraint of the vector elements, and the set Sn defines the
set of nonnegative vectors.

3.2.3. Projection onto Sets

The projection onto the set STLS is

a0 =
[
I + λη

(
S̄T S̄ − ν

τ
I
)]−1(

â + ληS̄T r
)
, (17)

where â /∈ STLS and λη is the Lagrange multiplier satisfy-
ing f(a0), where [5] defines f(·) as

f(a) ≡ ∥∥S̄a − r
∥∥2 − ν

τ

∥∥a∥∥2 − ν.

The projection onto the set SΣ is

a0 = â − 1
K

(
âT 1 − 1

)
1K×1, (18)

where â /∈ SΣ.
The projection onto the nonnegativity set Sn is performed

by replacing negative elements of â with zeros to form a0.

4. SIMULATIONS

The performance of the set theoretic approach to estimate
the proportion of the classes present in a mixture was tested
for mixtures containing parametric and nonparametric dis-
tributions.

For parametric distributions, the expectation-minimization
(EM) algorithm provides a model to compare results from
the proposed set theoretic approach. A classical paramet-
ric mixture distribution was formed for simulation using
1000 realizations of K = 2, Gaussian distributions with
unique means and variances. For the POCS method, each
class estimate was generated from 10 sets of histograms
formed using 1000 realizations from each Gaussian distri-
bution known to exist in the mixture.

A nonparametric mixture density was formed using a
combination of K = 2 nonstandard distributions. Estimates
for each class were generated from 10 sets of histograms
formed using 100 realizations from each nonstandard distri-
bution known to exist in the mixture.
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Both simulations implemented the following for the POCS
estimates. The mean class distributions were set as column
vectors of length M = 100. Noise power of -50dB and
-60dB approximated σ2

υ and σ2
η, respectively. The param-

eter τ was set at 1000 times the value defined in eq. (16).
Mean-squared error (MSE) statistics were obtained for each
method.

5. RESULTS

Estimation results for mixing proportions in parametric and
nonparametric distributions listed in Table 1 indicate the
precision of the estimates of a. The method of POCS us-
ing the modified ML, from eq. (13), and TLS, from eq.
(15), residual sets was compared to the EM-algorithm found
in [4] for parametric distributions. Note that the EM algo-
rithm estimates the mixture proportions from the unbinned
recorded data, but the POCS methods estimate the mixture
proportions from a normalized histogram of the recorded
data. This should be considered when evaluating the error
measurements. Figure 1 shows estimation results for non-
parametric distributions and the corresponding means of the
class distributions in the mixture density. The POCS-TLS
errors for the nonparametric mixture distribution in Figure
1 correspond to those listed in Table 1.

Table 1. MSE of a (dB)
Parametric Distributions

EM-Algorithm -50.18
POCS-ML -32.51
POCS-TLS -33.27

Nonparametric Distributions
POCS-ML -33.28
POCS-TLS -35.37

6. CONCLUSIONS

Our nonparametric methods based on POCS compared well
to parametric methods The EM estimation is expected to
perform better for parametric distributions, since it estimates
the parameters of the distributions and the mixture propor-
tions. This comparison should be taken more as an indica-
tion of the viability of the new method, since the assump-
tions on the two methods are significantly different. The
parametric methods assumes knowledge of the form of the
underlying distributions. The nonparametric methods as-
sume estimates of the means of the distributions. The qual-
ity of these estimates will significantly influence their per-
formance. The quality will also depend on the variation
on the sample distributions for each realization. When the
means are accurate, the nonparametric methods can better
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Recorded and Estimated Mixture Distributions

Recorded Mixture
POCS−TLS Estimate

0 1 2 3 4 5 6
0

0.05

0.1

Means of Class Distributions

Class 1
Class 2

Fig. 1. Nonparametric Results

the EM estimation. As the estimates of the means become
less accurate the estimates of the mixture proportions de-
grade as expected. However, for the nonparametric case, the
parametric methods cannot be used, leaving the new method
alone in the field.
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