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ABSTRACT

We derive the Minimum Entropy Estimation (MEE) method 
from Information Theory to show the similarity of this method 
to the Maximum Likelihood Method for the linear regression 
problem. The result is a nonparametric-based identification 
technique that can be applied in any case with iid noise that 
outperforms estimators in this case, including the popular LS 
method and a recently-developed (and limited) version of the 
MEE. Performance-wise, the MEE method is comparable to 
the Expectation-Maximization (EM) method. Its application 
to FIR system identification produces a very efficient 
implementation of this technique. 

1. INTRODUCTION

Estimation of unknown parameters based on available data is 
an important problem that finds applications in numerous 
fields. This paper investigates a particular form of this 
problem, namely the linear regression problem, which is the 
foundation of the field of system identification. 

In the case when the characteristic of the output noise is 
known, the best solution to the linear regression problem is 
undoubtedly the classical Maximum Likelihood (ML) 
estimator. However, this knowledge is not realistically 
available in most situations. Thus, a straightforward 
application of the ML method is not possible. The widely-
used (sub-optimal) approach is to assume that the noise is 
Gaussian and the ML estimator becomes the Least-Squares 
(LS) estimator. Other methods such as Expectation 
Maximization (EM) promise some results asymptotic to the 
ML solution [1]. In this paper, we consider an alternative – 
the method of Minimum Entropy – that also shares some 
desirable properties with the ML method. At this point of 
research, this Minimum Entropy estimator produces 
comparable results with the method of EM while having 
apparently lower computational complexity. 

The idea of Minimum Entropy Estimation has been 
considered by several researchers (namely, [2], [3], and [4]). 
However, previous attempts either lack precise mathematical 
rationales [3], [4]; or were derived for the limited case where 
the output noise has an even pdf [2]. To surmount these 
shortcomings, we derive the Minimum Entropy Estimator 

(MEE) from the framework of Information Theory to show 
that this method can be applied to iid noises with any pdf. Our 
derived method is, therefore, far better than the popular LS 
estimator in this case. Furthermore, our proposed method 
outperforms the somewhat similar algorithm given in [2]. 

2. PROBLEM FORMULATION AND ANALYSIS

Consider the linear regression problem: 
Ty u  (1) 

where the random variable (RV) y  and random vector u can 

be observed and  is the immeasurable random noise. We 

wish to estimate the true parameter  given the finite 

observations {yi, ui}, i=1…N, where N dim( ) . We 

assume that the noise { i } are iid with the pdf ( )f  and the 

sequence of vectors {ui} are also iid with the pdf ( )fu u . We 

further assume that u  possesses sufficient randomness to 

identify  from the data. If  is any arbitrary estimate of 
then the residual noise is: 

( )T Te y u u  (2) 

Since we assume that both { i } and {ui} are independent 

sequences, the sequence {ei} is also iid with the pdf:

( ) ( ) ( ( ) )T
ef e f f e du u u u  (3) 

When ( )f  is known, the ML estimator ˆ
ML  is 

1

ˆ log ( , | )arg max
N

ML i i
i

f y u  (4) 

As pointed out by Akaike [5], the maximization of the Log-
Likelihood Function is in fact the minimization of the 
(sampled version of) the Kullback-Leibler (K-L) distance 
from ( , | )f yu  to ( , | )f yu :

( , | ) ( , | )
( , | ) log

( , | ) ( , | )

f y f y
D E f y d dy

f y f y

u u
u u

u u
 (5) 

Note that: 

( , | ) ( ) ( )Tf y f f yuu u u
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Rewriting D in terms of the independent random variables u

and , we have: 

( )
( ) ( ) log

( )

( )
( ) ( )log

( ( ) )

( ) ( ) ( ) log ( ( ) )

T
T

T

T

T

f y
D f f y d dy

f y

f
f f d d

f

H f f f d d

u

u

u

u
u u u

u

u u
u

u u u

where ( ) ( )log ( )H f f d  is the entropy of .

Performing the change of variable: ( )T
u , we 

get:

( ) ( ) ( ( ) )log ( )TD H f f f d du u u u  (6) 

Applying (3) into (6): 

( ) ( )log ( )

( )
( ) ( )log ( )log ( )

( )

( || ) ( ) ( )

e

e
e e e

e

D H f f d

f
H f d f f d

f

D f f H e H

 (7) 

Note that the || denotes the K-L distance. Let ( )Tv u

then v  is also an RV. Note that: 

( ) ( , ) ( | )H e I e v H e v

where ( , )I e v  is the mutual entropy between e  and v , and: 

( | ) ( ) ( | ) log ( | )vH e v f v f e v v f e v v de dv

Because e v  and the entropy is translation invariant, we 

get:

( | ) log ( | )

( )log ( )

( )log ( )

f e v v f e v v de

f v f v d

f f d

Thus:
( ) ( , ) ( )H e I e v H  (8) 

Substitution of (8) into (7) yields: 

( || ) ( , )eD D f f I e v

Since both ( || )eD f f  and ( , )I e v  are non-negative, this 

equation reveals that the purpose of minimizing D  is to get 

ef  as close to f  as possible while making the RV e  and 

v  as independent as possible. Note that both conditions can 

only happen when ef  and f  are the same, hence the 

minimization of one of the two aforementioned quantities 
( || )eD f f  and ( , )I e v  will lead to the minimization of the 

other.

In the absence of knowledge about f , we can’t 

minimize ( || )eD f f . However, knowledge of e  is available 

because we measure both y and u. Coupling (8) with the fact 
that ( )H  is a constant, we arrive at the conclusion that the 

minimization of H(e) will lead to the minimization of ( , )I e v

and hence D . This notion forms the basis of the Minimum 
Entropy method. 

3. THE MINIMUM ENTROPY METHOD

As noted in section (2), minimization of H(e) w.r.t. to  will 

lead to a close estimate of the true parameter . However, 
H(e) is not readily available since we don’t know ef (e) (as a 

function of unknown ( )fu u  and ( )f ). Thus, an estimate of 

H(e) based on the available data {ei, i=1…N} is needed.  

The current way to estimate H(e) is based on the 
estimation of the function ef (e) and this, in turn, is a 

nonparametric problem (see e.g. [6], [7]). The classical 
approach is Parzen’s kernel estimator: 

1

1ˆ ( )
N

i
e

i

e e
f e K

Nh h
 (9) 

where K is any function integrable to 1 that approximates the 
Dirac delta function, such as the Gaussian kernel 

2(1/ 2 )exp( / 2)e   (see more details in [6] [7]). 

Once the approximated pdf ˆ ( )ef e  is established, the 

entropy H(e) can be estimated in several ways (see [8], [9]). 
Two popular entropy estimators are: 

The estimator based on the Law of Large Number [8]: 

1

1 ˆˆ ( ) log ( )
N

e i
i

H e f e
N

The “plug-in” estimator [9]: 

ˆ ˆˆ ( ) ( )log ( )
A

e e
A

H e f e f e de

Let ˆ ( )H e  be an entropy estimator, the Minimum Entropy 

Estimator for the parameter  is then defined to be: 

ˆ ˆ ˆargmin ( ) argmin ( )T
MEE H e H y u  (10) 

4. THE MINIMUM OF H(e)

The function H(e) can be shown to have only one global 
minimum at  .  From (8), the minimum of H(e) is 
obtained when ( , ) 0I e v  or e and v  are independent. Since 

e v  and  and v  are independent, the above condition 

can only occur when ( )Tv u  is a constant. Since we 

assume that u  is sufficiently random, ( )T
u  can’t be a 

constant unless . At this minimum, the empirical error 
e  is certainly equal to the true noise , which shows that 

minimizing H(e) will lead to the minimization of ( || )eD f f .
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5. EXTENSION OF THE MEE TO NONLINEAR REGRESSION

The extension of the MEE to nonlinear regression is 
straightforward. The regression problem is now cast in this 
form: 

( , )y G u  (11) 

where G is a known function. Since the analysis for the linear 
regression still holds, the function G must satisfy the 
following condition in order to estimate :

( , ) ( , ) a constant,   =G Gu u u  (12) 

The MEE in this case can be defined as: 
ˆ ˆarg min ( ( , ))MEE H y G u  (13) 

where H  is again an entropy estimator. 

When G  doesn’t satisfy (12), we consider two cases: 

If G  can be decomposed into: 

1 1 2 2( , ) ( ) ( , )G g gu u

where 1g  has a unique inverse and 2g  satisfies (12). Note 

that the regression equation can be rewritten as: 

2 2 1 1( , ) ( ( ) )y g gu

If we define 1 1' ( )g  then { '
1 1( )i ig } is also an 

iid noise sequence. Therefore, 2  can be estimated by the 

MEE. If we know furthermore that  has zero mean then 1

can be estimated as the mean of the residual noise: 

1
1 1 2 2

1

1ˆ ˆ( , )
N

i i
i

g y g
N

u

If the function 1g  doesn’t have a unique inverse, such as 

1 1 11 12( )g

then this is the unidentifiable case and 1  simply can’t be 

estimated from the available data. 

Note that in [10], an extension of the work described in 
[2], the authors also considered the application of their MEE 
to the nonlinear case. However, their extension still suffers 
from the same limitation because the output noise is restricted 
to the class of symmetric pdf’s. By following the same 
development as given in section 2, we remove this artificial 
restriction. 

6. APPLICATION OF THE MEE TO FIR FILTER ESTIMATION

Suppose we need to estimate a pth-order FIR filter whose 
output is corrupted by unknown non-Gaussian noise: 

1

0

( ) ( ) ( ) ( )
p

i

y n w i u n i n  (14) 

We can define [ (1),..., ( )]Tw w p  and 

[ ( ),..., ( 1)]Tu n u n pu  to represent this problem as a 

linear regression problem. The MEE in this case is: 

ˆ ( )ˆ 0
T

MEE
H y u

sol  (15) 

where we consider the entropy estimate: 

ˆ ˆˆ ( ) ( ) log( ( ))
A

T
e e

A

H e y u f e f e de

and ˆ ( )ef e  is the Parzen’s kernel estimate: 

1

1 ( )ˆ ( )
TN

i i
e

i

e y
f e

Nh h

u

In general, this solution provides an adequate estimate of the 
true parameters. However, in some specific cases, it can be 
significantly improved. We consider in this paper one such 
case where the input {u(n)} has non-zero mean. 

Since the goal is to get ˆ
MEE  as close to  as possible, 

one indirect method is to make ˆ ( ) /TH y u  as close 

to 0 as possible. Computation of the expectation of this 
quantity yields: 

1

ˆ ( )

1 ˆ(log( ( )) 1) '
AN

i

i A

H e
E

e
E E f e K de

N h

=

u

 (16) 

Thus, in order to force this expectation to zero, it is desirable 
to have a sequence of zero-mean input. This can be 
accomplished by considering a change of variable in the 
regression equation: 

( ) ( ) ( ) ( ( ) ) ( ( ) )T T Ty n n n n nu u u u  (17)

where u is the sample mean of { ( )nu }. If we introduce 

'( ) ( )n nu u u  and '( ) ( ) Tn n u  then the regression 

equation is rewritten as: 

( ) '( ) '( )Ty n n nu

with the input sequence  '( )nu  having zero-mean and the 

noise '( )n  being an iid sequence. The MEE for this 

regression equation will then have the desired property of

ˆ ( )
0

H e
E

=

, making the parameter estimates much 

closer to the true parameters. The simple operation of 
removing the sample mean from the vector sequence { ( )nu }

is equivalent to removing the mean from the input sequence 
{u(n)}

We illustrate this algorithm by considering a simulation 

with an actual case: 1, 0.5,0.2, 0.3,0.1
T . The input 

signal {u(n)} is an iid sequence uniformly distributed in [0,2] 
and the simulated noise { ( )n } is a bimodal distribution with 

nonzero mean (see Figure 1). We conduct 200 experiments, 
each has N=512 input/output data samples. 

II - 547

➡ ➡



-0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

Figure 1. Bimodal density distribution of the true noise

The particular algorithms that we are comparing are the 
Least Squares (LS) estimator, the MEE introduced by 
Pronzato and Thierry in [2] (MEE-PT), the general MEE 
developed in section 2-3, and the modified MEE developed in 
section 6 (Adj. MEE). We also try the LS algorithm on the 
adjusted input (Adj. LS) as described in Equation (17). 

Some discussion about the previous approaches can be 
useful. The LS estimator is optimal when the noise  is 

Gaussian distributed, thus a non-Gaussian noise yields sub-
optimal performance. The algorithms developed by Pronzato 
and Thierry, on the other hand, make an explicit assumption 
that the pdf of the noise is even symmetric, thus as this 
assumption is untrue in this case, that method won’t perform 
well either. 

Figure 2 shows the average mean square errors (MSE) of 
the respective algorithms. It is quite clear that the MEE is 
much better than both the popular LS method and the 
algorithm proposed by Pronzato and Thierry. To be more 
precise, Pronzato and Thierry’s algorithm will produce a poor 
estimate with large MSE either if the unknown output noise 
has non-even symmetric pdf or if the input sequence has 
nonzero mean. Both of these limitations have been addressed 
in the generalized MEE presented in this paper. 

7. CONCLUSIONS

In this paper, we derive the generalized version of a 
regression technique – the Minimum Entropy Estimation 
method – from Information Theory to show the kinship of 
this method with the optimal method of Maximum 
Likelihood. The results are quite positive – it is much better 
than the currently popular Least Square method as well as a 
(somewhat limited) version of the MEE developed recently 
by Pronzato and Thierry. Our technique has also been shown 
to be extensible to a class of nonlinear regressions. The 
application of this method to estimate FIR filters whose 
output is corrupted by non-Gaussian additive noise is shown 
to be highly successful, especially with the modified version 
of our method is used to address the particular case of 
nonzero-mean input. 

At this particular point of research, we note that the MEE 
does produce a comparable estimate to the well-established 
Expectation-Maximization method (an iterative ML scheme 
where the parameters and the noise distribution are estimated 
alternatively). Because the MEE needs to minimize only one 
cost function, while the EM method has to minimize a similar  

Figure 2. Average MSE's of several algorithms

cost function several times, the computational complexity of 
MEE is much better than that of the EM method. We will 
investigate and compare the relative performances between 
these two methods at a more detailed level in the near future. 

The convergence rates of our proposed MEE estimators, 
as well as their application adaptive filters, are also among 
several directions of research that we are conducting. 
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