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ABSTRACT

In this paper a novel non-parametric estimator, which we
call the Regularized Time Delay Estimator (RTDE), is in-
troduced for the time delay estimation problem in MISO
(Multiple Input-Single Output) linear systems. This estima-
tor decouples the input-output signals in the frequency do-
main using a regularized Wiener-Hopf filter. An RLS (Reg-
ularized Least Squares) problem is formulated based on the
coherence spectrum in order to find the optimal filter that
can decouple the signals. Then, the corresponding delayed
impulse responses of the system are computed. As a result,
the time delay between the several input-output signals can
be estimated.

1. INTRODUCTION

As a consequence of industrial automation, many process
industry companies like to exploit the enormous and valu-
able data they have recorded from Data Acquisition Systems
to build models of their processes. Although today several
methods exist to build models based on data, there are still
many problems to be solved, one of which is time delay es-
timation. In this paper, the problem of time delay estimation
for MISO (Multiple Inputs - Single Outputs) systems based
on noisy measured data is treated.

Basically, there are two methodologies to solve the prob-
lem. The first one is model-based or parametric estimation,
where some assumptions have to be made about the system
dynamics, and the second one is model-independent or non-
parametric estimation, where the estimation is done based
on the analysis of the data. In this work, we will focus on
the nonparametric case.

In the literature, some classical methods for time delay
estimation based on the technique of cross-correlation are
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found (see [1], [2], [3]). Although, they have been shown
to work pretty well, they were basically designed to deal
with SISO (Single Input - Single Output) systems. Hence,
some extra considerations like input signal decoupling have
to be done in order to extend these methods to the MISO
(Multiple Inputs - Multiple Outputs) case. As a result, a
new time delay estimator for MISO systems based on gen-
eralized cross-correlation is introduced in this paper, which
will be called Regularized Time Delay Estimator (RTDE).
This estimator decouples the input-output signals in the fre-
quency domain using Wiener-Hopf filter which is regular-
ized by the coherence spectrum (section 2.2). Therefore, an
RLS (Regularized Least Squares [4]) problem is formulated
based on the coherence spectrum such that this filter is able
to decouple the signals in an optimal way. Consequently,
the corresponding delayed impulse responses and time de-
lays of the system are computed.

2. SOME DEFINITIONS

2.1. Cross-Correlation function

The Cross-Correlation function between two signals u(k)
and y(k) in the discrete time domain is defined as

Ruy(τ) = E[u(k+τ)y(k)], 0 < k < N−1, −T < τ < T,
(1)

where E[·] denotes the mathematical expectation.

Applying the DFT (Discrete Fourier Transform) to (1), gives

Guy(ωn) = Y (ωn)U∗(ωn), (2)

for ωn = 2πn
NT , n = 0, 1, 2, . . . , N − 1 and sampling time

T . Where ’∗’ denotes conjugate, Y (ωn) and U(ωn) are the
DFT of y(k) and u(k), respectively, and Guy(ωn) is the
Cross-Power Spectrum.

2.2. Coherence Spectrum

The coherence spectrum between two signals u(k) and y(k)
is equal to the cross-power spectrum Guy(ωn) divided by
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the square root of the product of the two auto power spectra.
Specifically, the complex coherence is defined by

γuy(ωn) =
Guy(ωn)√

Guu(ωn)Gyy(ωn)
. (3)

The coherence is a normalized cross-spectral density func-
tion; in particular, the normalization constrains so that the
Magnitude-Squared Coherence (MSC) defined by

Cuy(ωn) � |γuy(ωn)|2 (4)

lies in the range 0 ≤ Cuy(ωn) ≤ 1, for all frequencies ωn.

One interesting interpretation of the MSC is that it is a
measure of the relative linearity of two processes (for more
details, see [2]).

In this paper the coherence spectrum will be used as a
measure of confidence of the cross-power spectrum in each
frequency ωn, this in order to improve the time delay es-
timation, as shown below in figure (1). In this figure we
can see that for low frequencies the coherence spectrum is
higher, this is due to the fact that the input and output se-
quences contain more energy in this frequency range. On
the other hand, for higher frequencies the coherence spec-
trum tends to zero, this is due to the fact that most of the
energy in this frequency range comes from the disturbance
signal. As a result, we can say that the coherence spectrum
can be used to detect in which frequency band the estima-
tion of the cross-power spectrum between the two signals is
reliable or not.
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Fig. 1. Example of estimated coherence spectrum. (a)
Peridiogram of the input signal; (b) Peridiogram of the out-
put signal; (c) Peridiogram of the measurement noise signal;
(d) Estimated coherence spectrum.

3. PROBLEM FORMULATION

Let us assume that U ∈ RN×p, E ∈ RN×1, and Y ∈
R

N×1 are measured data sequences consisting of N equidis-

tant time points of an LTI MISO system with p inputs and
one output as shown in figure (2), such that

y(k) = f(u1(k), u2(k), . . . , up(k))+e(k), 0 ≤ k ≤ N−1.
(5)

The problem considered here is to estimate the time delays τ
between the ith input ui(k) and the output y(k), taking into
account that y(k) is also affected by the other inputs and
the noise signal e(k). Some classical methods like PHAT,

u1(k)
u2(k)

up(k)

e(k)

y(k)

τ
f(u1, u2, . . . , up)

Fig. 2. LTI MISO system with p known inputs u(k) with
unknown delays, one known output y(k), and the unknown
noise signal e(k) which represents the input-output noise
measurement, where f(u1, u2, . . . , up) is an unknown lin-
ear function (i.e., linear dynamic system) of u(k).

ROTH, SCOT, CRA, Bispectrum (see [1], [5] for a survey),
compute the time delay between two signals, typical input
and output, for SISO (Single Input-Single Output) systems
by estimating the impulse response based on the General-
ized Cross-Correlation function [1], as can be seen in figure
(3). Thus, depending on the particular form of the filtering
function Ψg(ωn), one can have a different performance of
the cross-correlation function.
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DetectorIDFT
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ui(k)

y(k)

Ψg(ωn)
τ̂i

Fig. 3. Time delay estimation for SISO systems based on
the generalized cross-correlation. Where u i(k) and y(k) are
the input and output signal respectively, ’*’ denotes con-
jugate, Ψg(ωn) is a filtering function that depends on the
method to be used to make the time delay estimation such
as CRA, PATH, ROTH, SCOT or ML. Finally τ̂i is the time
delay estimation.

4. REGULARIZED TIME DELAY ESTIMATION

In this section we will extend the generalized cross corre-
lation function idea to the MISO systems case, assuming
the system is linear-time-invariant (LTI), and taking into ac-
count that the input and output signals are coupled. There-
fore, given the system shown in figure (4), where U1(ωn), . . .
, Up(ωn), Y (ωn), and E(ωn) are respectively input, output,
and noise variables in the discrete Fourier domain, and a set
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U1(ωn)

U2(ωn)

Up(ωn)

H1(ωn)e−jωnτ1

H2(ωn)e−jωnτ2

Hp(ωn)e−jωnτp

E(ωn)

Y (ωn)

Fig. 4. LTI MISO delayed system in Laplace domain. with
U(ωn), Y (ωn), and E(ωn) the input, output and measure-
ment noise variables in the Laplace domain respectively.
Hi(ωn)e−jωnτi the delayed transfer function from the i th

input to the output.

of unknown transfer functions H i(ωn) from each input i to
the output, thus, Y (ωn) can be written as

Y (ωn) = H1(ωn)e−jωnτ1(ωn)U1(ωn) + . . .

+Hp(ωn)e−jωnτpUp(ωn) + E(ωn). (6)

Consequently, the delayed impulse responses H1(ωn)e−jωnτ1 ,
. . . , Hp(ωn)e−jωnτp can be computed from the cross corre-
lation function between input and output signals as follows,2

664
ĜU1Y (ωn)

...
ĜUpY (ωn)

3
775

| {z }
Ĝp×1

=

⎡
⎢⎣

Û1(ωn)U∗
1 (ωn) . . . Ûp(ωn)Û∗

1 (ωn)
...

. . .
...

Û1(ωn)Û∗
p (ωn) . . . Ûp(ωn)Û∗

p (ωn)

⎤
⎥⎦

︸ ︷︷ ︸
Âp×p

·

⎡
⎢⎣

Ĥ1(ωn)e−jωnτ1

...
Ĥp(ωn)e−jωnτp

⎤
⎥⎦

︸ ︷︷ ︸
Hp×1

+

⎡
⎢⎣

V1(ωn)
...

Vp(ωn)

⎤
⎥⎦

︸ ︷︷ ︸
V p×1

(7)

where Â ∈ Cp×p is positive definite, and contains the esti-
mated power and cross-power spectrum U(ωn)U∗(ωn) ∈ R

and U(ωn)U∗
j (ωn) ∈ C of the input variables, respectively.

Ĝ ∈ Cp×1 contains the estimated cross-power spectrum
between the input i and the output, H ∈ Cp×1 contains the
delayed transfers functions Hi(ωn) between the ith input
ui(k) and the output y(k) at the frequency ωj , and V is the
unknown cross-power spectrum between the measurement
error and ui(k). As a result, equation (7) can be written as 1

Ĝ = ÂH + V . (8)
1The estimation of the cross and power spectrum in equation (7) is

made based on P. Welch’s method. (Peridiograms) [6]. This estimation
is due to the fact that we have a finite number of samples.

On the other hand, since the MSC Cuiy(ωn) gives informa-
tion about how reliable the cross-power spectrum Guiy(ωn)
is at certain frequencies ωj , this will be used as a weighted
parameter in the solution of equation (8). Consequently, the
problem can be formulated as an RLS (Regularized Least
Squares) problem, as follows:

min
H

‖ÂH − Ĝ‖2
2 + λ2‖LH‖2

2, (9)

where L = I − C, I ∈ Rp×p is the identity matrix, and
C ∈ Rp×p is defined as

C = diag([Cu1y(ωj) . . . Cupy(ωj)]), (10)

a diagonal matrix containing the MSC at the frequency ω j ,
and λ is a regularization parameter that must be chosen such
that the solution of equation (9) H , is a compromise be-
tween the minimization of ‖ÂH − Ĝ‖2 and λ‖LH‖2 (see
[4], [7]). A large λ (equivalent to a large amount of regu-
larization) favors small solution seminorm at the cost of a
large residual norm, while a small λ (i.e., a small amount of
regularization) has the opposite effect. Also can be shown
that λ controls the sensitivity of the regularized solution H
to perturbation in Â and Ĝ, and the perturbation bound is
proportional to λ−1. Thus, the regularization parameter λ
is an important quantity which controls the properties of the
regularized solution, and λ should therefore be chosen with
care.

One very well-known method to compute λ is the L-
Curve which is a plot -for all valid regularization parameters-
of the (semi)norm ‖LH‖2 of the regularized solution ver-
sus the corresponding residual norm ‖ÂH − Ĝ‖2. In this
way, the L-Curve clearly displays the compromise between
minimization of these two quantities, which is the heart of
any regularization method. Then, after choosing λ in ac-
cordance to the L-Curve method, the minimization problem
described in equation (9) is solved using the Tikhonov reg-
ularization approach (see [4] for details).

The Tikhonov’s method computes the regularized solu-
tion H of equation (9) as the solution to the following least
squares problem

min

‚‚‚‚‚ Â

λ1/2L

!
H − Ĝ

0

!‚‚‚‚‚
2

2

, (11)

Finally, the IDFT is applied to H in order to find the
estimated delayed impulse responses in the time domain.
Then, the time delays are obtained by looking at the maxi-
mum values of the estimated impulse responses.

5. NUMERICAL RESULTS

In this section we will compare RTDE with the classical
nonparametricMaximumLikelihood (ML) estimator method,
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for a MISO system with four inputs, one output,and differ-
ent values of SNR. To make the simulations four delayed
linear systems were selected

G1(s) =
e−5s

(s + 0.7)(s + 0.5)
G2(s) =

e−20s

(s + 0.8)(s + 1.3)

G3(s) =
e−9s

(s + 0.3)(s + 1.8)
G4(s) =

e−13s

(s + 0.5)(s + 1.5)

with their respective time delays:

τ1 = 5 sec, τ2 = 20 sec, τ3 = 9 sec, τ4 = 13 sec

Initially four different step piece-wise input signals of length
4850 were generated, assuming a sampling time of 1 sec-
ond. Then, in order to investigate the performance of RTDE
for different conditions of noise: without measurement noise,
measurement uncorrelated white noise, measurement un-
correlated and correlated coloured noise, were added to the
original input and output signals. The computations and
simulations were made in Matlab 6.5.
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Fig. 5. Comparison between the maximum likelihood (ML)
time delay estimator [1] and RTDE estimators for the de-
layed impulse response H2(ωn)e−jωnτ2 , with τ2 = 20 sec.
(a) without measurement noise. (b) with measurement un-
correlated white noise. (c) with measurement uncorrelated
coloured noise. (d) with correlated coloured noise.

In figure (5) we observe that RTDE performs at least as
ML for the (a) and (c) cases, and much better for the (b)
and (d) cases, showing that RTDE works better in the sense

of robustness than ML under different measurement noise
conditions. This, due to the fact that with the help of the
coherence spectrum we can identify which frequency band-
width of the cross-power spectrum is corrupted by noise. As
a result, RTDE neglects this information resulting in a more
robust estimation, as was shown in section (4).

6. CONCLUSIONS

In this paper we have introduced a new non-parametric ap-
proach, RTDE. This approach has shown to be more reliable
than the classical ones, for the MISO systems case in very
critical noise conditions. By using the information that the
coherence spectrum gives about the reliability of the cross-
power spectrum, the problem of time delay estimation can
be formulated as a RLS problem. Due to the RLS formu-
lation we can have a very robust estimator in the sense of
better performance under problems of noise input correla-
tion and noisy signals.
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