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ABSTRACT1

A new joint autoregressive (AR) parameter and order 

estimation approach is presented which works well 

regardless of noise type. Unlike many other existing AR 

estimation methods which require prior knowledge of model 

order and noise statistics, the proposed method provides 

embedded order estimation in the pole-zero domain without 

requiring any noise statistics. The joint method virtually 

achieves the Cramor-Rao bound (CRB) in a general noise 

environment. 

1. INTRODUCTION 

The fundamental effect of white noise on AR signals is well 

understood in some pioneering papers [1][2], where the 

serious accuracy degradation due to the white noise is 

reported. Recent work on the noisy AR estimation problem 

can be found in the literature, e.g., [3]-[8]. In [3][4][5][8], 

an augmented AR model (i.e., AR(p+1)) plays an important 

role in estimating noise variance as well as AR parameters. 

In [6], the noise variance and AR parameters are computed 

by solving 2 sets of linear and nonlinear equations. The 

colored noise case is considered in [8] with 20dB SNR. 

Although many papers have dealt with the noisy AR 

estimation problem, in most cases the noise is confined to 

be stationary and white and prior knowledge of the AR 

order is required. The computation of noise statistics is 

another burden for a reliable estimation result. To say 

nothing of nonstationary case, even with stationary colored 

noise, estimation becomes difficult and inaccurate. In this 

context, two challenging issues follow. The first is how to 

deal with the nonstationary noise. The second is how to do 

AR noisy estimation without separate AR order estimation. 

Some recent approaches for AR order estimation may be 

found in [9][10]. Most of the well-known criteria (e.g., AIC, 

MDL CAT, etc.) used in estimating AR order, however, 

may be used as only indicators of model order [11]. 
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In this paper, the two issues are effectively tackled in the 

pole-zero domain. The joint method does not require noise 

statistics or any classic model order criteria. We develop the 

key idea in the white noise case and then extend it to 

nonstationary colored noise. To our knowledge, the joint 

method is the first approach which is working reliably for 

AR order and parameter estimation regardless of SNR and 

noise statistics. 

2. PROBLEM STATEMENT 

A noisy AR(p) signal may be modeled as the series 

connection of an all-pole filter and noise addition as in Fig. 

1, where Ap(z) = 1+ap(1)z-1 + ··· +ap(p)z-p (say, ap =

[ap(1),ap(2), ···, ap(p)]) and the additive noise v(n) constitute 

the model. 
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Fig. 1. AR(p) signal model with observation noise. 

With an uncorrelatedness assumption on the signal and 

noise, we have a relationship of second order statistics,  

Rx = Ry  Rv        (1) 

where R is the autocorrelation matrix. We may simply 

compute the AR parameters by ap = Rx
1rx where rx = [rx(1),

rx(2), ···, rx(p)]T and rx(k) = E[x(n)x(n k)]. However, finding 

a reliable estimate of Rv from y(n) is not a trivial matter. 

Making it worse, the model order p is not known in general. 

Rv may be estimated indirectly (e.g., [8]) with limited 

accuracy. The fundamental limitation of depending on (1) 

happens especially when the noise is nonstationary. The 

main goal is to overcome such limitations. 

3. JOINT ESTIMATION APPROACH 

3.1. Mathematical Motivation 

For the convenience of illustration, let v(n) be stationary 

white noise with power v
2. Then the power spectrum of the  
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noisy AR signal y(n) in Fig. 1 is readily expressed as 
2 1
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Letting Bp(z)Bp(z
-1) = 1+ v

2Ap(z)Ap(z
-1), where Bp(z) = 

bp(0)+bp(1)z-1 + ··· +bp(p)z-p, we see that y(n) should be 

modeled as an ARMA(p,p) signal, i.e., Y(z)=Bp(z)/Ap(z).

Direct estimation of the ARMA(p,p) parameters is not 

appropriate because of poor accuracy and unknown order. 

We approximate the ARMA(p,p) signal to a higher order 

AR(s) signal. The overall noisy AR transfer function is then    
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( ) ( ) ( ) ( )

p

p p p s

B z

A z A z B z D z

       (3) 

where Ds(z) is an approximate polynomial with order s, i.e., 

Ds(z)=ds(0)+ds(1)z-1+ ··· +ds(s 1)z (s 1)+ds(s)z s. We may 

solve this approximate problem in an LS sense to show that 

the roots of Ds(z) should include all roots of Ap(z) and the 

remaining s p roots, which we call noise poles, are 

exclusively due to Bp(z) in the middle of approximation, (3). 

Let us consider nonstationary white noise. If v
2 in (2) 

changes with time, this means that only Bp(z) in (3) would 

change with time. In other words, the time varying v
2 will 

affect only the noise poles of the AR(s) signal. In the 

colored case, the noise still has no control over the true 

poles whether it is stationary or not. But the colored noise 

must be finitely autocorrelated, i.e., an MA noise signal or

having rv(k) = 0 for any |k| greater than a positive integer. 

Note that the noiseless AR(p) signal x(n) then becomes an 

ARMA(p,q) model (q > p). The MA assumption on colored 

v(n) actually excludes AR noise signals. The reason is that 

stationary AR noise adds extra poles and they will look like 

true poles in the pole-zero domain. Fortunately, the MA 

noise model encompasses a wide range of colored noise 

environments [8]. If the colored noise is not stationary, with 

any combinations of changing power, changing order, and 

changing coefficients, it will affect the MA part of y(n) in 

the same manner as the white noise case. 

3.2. The Joint Estimation Approach 

According to the previous discussion, virtually no matter 

what the noise statistics are, the AR(p) parameters ap =

[ap(1),ap(2), ···, ap(p)]T are purely melted down to the AR(s)

parameters ds=[ds(0),ds(1),ds(2), ···, ds(s)]T in some quite 

nonlinear manner. The key point is that the information 

would be revealed as p poles among s poles of the AR(s)

signal. We select the true p poles via multiple test-runs and 

artificial noise perturbation as follows.  

Since the true signal is usually assumed to have stronger 

self correlation than the noise signal, upon doing M test-

runs in the pole-zero domain we can expect that there are 

exactly p strongly flocking groups and each group consists 

of M poles. Thus, we may simply count the number of 

groups to obtain the model order p and average each group 

to compute the AR(p) parameter estimate. Ironically and 

obviously, nonstationarity of the noise is more helpful in 

this joint estimation because it tends to scatter the noise 

poles more, so we want to make the MA noise part of y(n)

to be more nonstationary by the artificial noise perturbation 

before we do the actual estimation as shown in Fig. 2.  

The artificial noise perturbation consists of two parts: 

the nonstationary white noise (z(n) in Fig.2) generation and 

the average noise compensation. The artificial noise can be 

generated in many ways. In this paper, we set two noise 

variances defined by some ratios of the variance of y(n) and 

then generate the first half of z(n) to have one of the pre-set 

noise variances and the second half to have the other. Thus 

y1(n) in Fig. 2 contains a nonstationary noise part as well as 

the stationary AR(p) signal part. z(n) is compensated by 

subtracting the average noise variance from the diagonal 

terms of the autocorrelation matrix of y1(n). Note that the 

purpose and meaning of the artificial noise compensation 

are fundamentally different from that in [1][2] where the 

purpose is to remove stationary white observation noise as 

exactly as possible to make a less noisy situation. In Fig. 2, 

however, we reduce the overall noise power to prevent 

unreasonably high noise power.  
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Fig. 2. Structure of the joint estimator. 

3.3. On the Accuracy of AR Parameter Estimation 

Since the approximation in (3) can be replaced with equality 

in case of infinite order s, the joint estimation based on the 

higher order AR(s) pole location is asymptotically unbiased. 

As shown in simulation results, however, s does not need to 

be very large. Another important performance criterion is 

the consistency, which usually requires small estimation 

variance as well. In general, it turns out that the CRBs of 

AR parameter estimates depend on the locations of the true 

poles [12]. In simulation, the joint method virtually achieves 

the theoretical lower bounds regardless of noise type. 

4. SIMULATION RESULTS 

We define an AR(4) process that has two pairs of poles 

at z=0.98e±j(0.2 ) and 0.98e±j(0.3 ). The unknown observation 

noise is either stationary white, nonstationary white, 

stationary colored, or nonstationary colored. A colored 

noise signal is generated by passing zero mean white noise 

through an FIR filter defined as H(z) = 1 1.0z 1+0.2z 2 [8].  
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Fig. 3. Simulation results for nonstationary colored noise corrupted signal with s=16, N=1500, SNR=25 to 5dB, and M=10; 

Overlay pole-zero plot (a) without noise perturbation and (b) with noise perturbation, and (c) Reconstructed AR Spectrum. 

We mention that the FIR filter is not restricted unless any 

zeros happen to cancel out the true poles. To impose 

nonstationarity, we change the noise variance corresponding 

to 25dB through 5dB SNR (abruptly or linearly). For 

comparison with other methods, we use the relative error 

(RE) and the averaged coefficient of variation (ACV) 

defined in [3] as 

1

sample mean vector of estimates
RE ,   

ˆ( ( )) 1
ACV  ,

sample mean of estimates of ( )

p

p

p
t p

i p

a i

p a i

a

a

where t(âp(i)) is standard deviation (STD) of estimates âp(i)

from the corresponding true value ap(i). RE is a measure of 

overall mean square error and ACV is a measure of overall 

STD from the true values. Letting (âp(i)) be STD of 

estimates âp(i) from its sample mean, we can watch bias by 

mental arithmetic of | t(âp(i)) (âp(i))| preventing any 

misleading small (âp(i)). The exact CRB for each AR 

parameter [12] is also computed for reference. We mention 

that 1% and 20% of variance of y(n) are used as the two 

variances for the artificial noise in the joint method 

regardless of noise type and SNR. 

Fig. 3 shows the simulation results for the nonstationary 

colored noise case with linear SNR change. As we see in Fig. 

3(a) and (b), the noise perturbation makes the noise poles 

more scattered. The final reconstructed AR spectrum in Fig. 

3(c) illustrates almost perfect reconstruction. 

For the purpose of comparison, we include two classic 

methods, the Yule-Walker (YW) method and the Modified 

YW (MYW) method as well as the methods in [3] and [6]. 

The YW method simply ignores any observation noise. The 

MYW method estimates the AR parameters by solving 

modified YW equations [11] which do not contain ry(0).

Since the last three methods were originally developed 

for stationary white noise with known model order, we first 

compare the joint method with them at different fixed SNRs 

as shown in Table I. To save space, Table I gives only first 

AR parameter estimate âp(1)± (âp(1)), ± t(âp(1)) along with 

RE and ACV. As expected, the YW method does not produce 

any reliable result even at 25dB SNR. The method in [3] 

seems to work at 20dB or 15dB, which outperforms the MYW 

method. The method in [6] is noteworthy because it robustly 

estimates the AR parameters in a wide range of SNR. The 

last column for the joint method shows a fair measure of 

noise immunity. To be fair, [6] is slightly better than the joint 

method at 20~30dB and, the joint method is slightly better at 

15dB but substantially better under 10dB of SNR.  

In the presence of nonstationary white noise, only [6] 

and the joint method work in practice. It is observed that [6] 

is more affected by abrupt change than linear change, but 

the joint method is not shaken by noise fluctuations and 

much superior to [6]. Table II shows the simulation results 

for the abrupt change. We omit the result for linear change 

because of space. Not surprisingly, all four other methods in 

Table I do not work at all and the method in [8] may operate 

with stationary 20dB colored noise. So we present 

performance of the joint method for 5dB stationary colored 

noise and two nonstationary colored noises in Table III, in 

which we see no performance degradation as in the previous 

two tables. Actually all these results are expected because 

we are making use of the nonstationarity of noise. Note that 

the joint method virtually achieves the CRB. 

We wrap up this section by mentioning several strong 

points of the joint method. It provides AR parameter 

estimates along with the order. It is multifaceted in terms of 

the observation noise. It does not require any estimation of 

noise statistics since it does not use them analytically. The 

distance from the CRB is shaken a little (but not much) by 

the noise type. The price we should pay for these nice 

properties may be the multiple test-runs (around 10 here). 

5. CONCLUDING REMARKS 

A joint AR order and parameter estimation algorithm, which 

operates in general noise environment, is proposed. Two 

major contributions may be mentioned. First, the joint  

True poles 

True poles 
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TABLE I

INFLUENCE OF SNR ON THE PERFORMANCE

(STATIONARY WHITE NOISE, 1000 INDEPENDENT SIMULATIONS,

ONLY THE ESTIMATES OF ap(1) = 2.7377 ARE SHOWN,)

SNR  YW MYW [3] [6] 
Joint

method

25dB âp(1) 1.8204 2.7470 2.7631 2.7332 -2.7633

 ±0.0267 ±0.1171 ±0.0514 ±0.0124 ±0.0186

t ±0.9178 ±0.1175 ±0.0573 ±0.0132 ±0.0316

RE 59.04 % 0.54 % 1.26 % 0.37 % 2.56 %

ACV 342.25 % 8.01 % 3.25 % 0.98 % 3.11 %

15dB âp(1) 1.0789 3.2978 2.2966 2.7348 2.7409

 ±0.0199 ±20.7964 ±9.4272 ±0.0169 ±0.0102

t ±1.6590 ±20.8039 ±9.4375 ±0.0172 ±0.0106

RE 90.25 % 34.49 % 21.88 % 0.29 % 0.19 %

ACV 770.79 % 1040.98 % 616.31 % 1.31 % 0.71 %

5dB âp(1) 0.4850 1.4010 0.7896 2.8094 2.7248

 ±0.0203 ±7.3727 ±2.9878 ±0.2238 ±0.0046

t ±2.2528 ±7.4929 ±3.5668 ±0.2350 ±0.0137

RE 97.52 % 83.79 % 96.28 % 5.04 % 1.64 %

ACV 4397.15 % 3609.38 % 3030.68 % 23.00 % 2.02 %

TABLE II

ACCURACY COMPARISON FOR NONSTATIONARY WHITE NOISE

(ABRUPT SNR CHANGE 25dB TO 5dB, 1000 INDEPENDENT

SIMULATIONS)

âp(1) âp(2) âp(3) âp(4) 

True Value 2.7377 3.7476 2.6293 0.9224

CRB ±0.0079 ±0.0136 ±0.0115 ±0.0042

2.7835 3.8511 2.7272 0.9603

 ±0.1160 ±0.2486 ±0.2611 ±0.1426

t ±0.1248 ±0.2693 ±0.2788 ±0.1475

RE 2.85 % 

[6] 

ACV 9.27 % 

2.7385 3.7330 2.6046 0.9069

 ±0.0049 ±0.0106 ±0.0104 ±0.0045

t ±0.0049 ±0.0181 ±0.0268 ±0.0161

RE 0.60 % 

Joint

Method 

ACV 0.87 % 

TABLE III

PERFORMANCE OF JOINT METHOD FOR COLORED NOISE

(1000 INDEPENDENT SIMULATIONS)

âp(1) âp(2) âp(3) âp(4) 

True Value 2.7377 3.7476 2.6293 0.9224

CRB ±0.0079 ±0.0136 ±0.0115 ±0.0042

2.7419 3.7438 2.6162 0.9126

 ±0.0057 ±0.0111 ±0.0107 ±0.0047

t ±0.0071 ±0.0117 ±0.0169 ±0.0108

RE 0.32 % 

Fixed

5dB

SNR

ACV 0.60 % 

2.7429 3.7536 2.6295 0.9199

±0.0051 ±0.0106 ±0.0104 ±0.0048

t ±0.0073 ±0.0122 ±0.0104 ±0.0054

RE 0.15 % 

Linear

Change

ACV 0.39 % 

2.7443 3.7547 2.6292 0.9192

 ±0.0050 ±0.0102 ±0.0101 ±0.0046

t ±0.0082 ±0.0125 ±0.0101 ±0.0055

RE 0.19 % 

Abrupt 

Change

ACV 0.40 % 

method is not affected by noise statistics and accordingly it 

does not require them. Especially and importantly, the AR 

parameter estimates nearly achieve the CRB in practice and 

are unbiased whether the observation noise is white or not 

and stationary or not. Secondly, the AR order is accurately 

obtained without any separate effort such as referring to any 

order criterion 
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