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ABSTRACT

The purpose of this contribution is to extend some recent results
on sparse representations of signals in redundant bases developed
in the noise-free case to the case of noisy observations. The type
of questions addressed so far is : given a (n,m)-matrix

�
with� � � and a vector � � � 


, find a sufficient condition for � to
have an unique sparsest representation as a linear combination of
the columns of

�
. The answer is a bound on the number of non-

zero entries of say

 �

, that guaranties that

 �

is the unique and
sparsest solution of

� 
 � � with � � � 
 �
. We consider the case

� � � 
 � � �
where


 �
satisfies the sparsity conditions requested

in the noise-free case and seek conditions on
�
, a vector of additive

noise or modeling errors, under which

 �

can be recovered from �
in a sense to be defined.

1. INTRODUCTION

Sparse approximation is the problem of finding a representation
of a signal as a linear combination of a small number of elements
from an over-complete set of vectors or signals often called a dic-
tionary or a redundant basis. Indeed several problems are of in-
terest depending on the context. One may seek (*) the sparsest
exact representation of the signal in terms of the elements or (*)
the representation of a given complexity that minimizes a certain
approximation error or (*) the sparsest representation that yields
an approximation error smaller than a specified threshold.

Recently, some theoretical results concerning the first of these
questions have been obtained. Given a (n,m)-matrix

�
with � �

� and a vector � that indeed admits an exact sparse representation,
say � � � 
 �

, it has been shown that if the number of nonzero
entries in


 �
is smaller than a given bound, then


 �
is the unique

sparsest representation. Since searching for the sparsest represen-
tation is a NP hard problem [1] that can only be solved by ex-
haustive search, one is tempted to replace the true search for the
sparsest solution :

� � ��
� 
 � � ! # $ # & � 
 � � ( * � ,

with
� 
 � �

the number of nonzero entries in


, by the easy-to-solve

linear program :

� � ��
� 
 � / ! # $ # & � 
 � � ( 5 7 ,

with
� 
 � / � 9 : / < 
 > <

, i.e. to minimize the * /
norm of



instead

of the sparsity itself. The problem is then to determine sufficient
conditions for the two criteria to have the same unique solution.
This problem has been studied in [2] and later been refined in [3] in
the special case where

�
is the union of two orthonormal matrices.

These results have been extended in [4] and [5] to matrices with
an arbitrary number of unit norm columns.

We consider here an extension of this problem. We assume
the signal to have an exact sparse representation but we observe
it in additive noise : � � � 
 � � �

with
�

a vector of additive
Gaussian noise A ( D E F G H ,

and seek conditions under which

 �

can be recovered from the observation of � by solving a convex
optimization problem such as a linear or a quadratic program. If
one seeks an



that leads to an exact reconstruction of � , it will

have generically at least � nonzero components. To get a sparse
representation one therefore has to allow for reconstruction errors
and the best one can expect is that the optimum of the program and
 �

have their nonzero components at the same locations, with the
same signs but of course slightly different values. That is we want
to recover the true sparse expansion with slightly biased weights.
The bias converging to zero as the variance of the noise diminishes.

In the linear regression context, this is known as the subset
selection or selection of variables problem and is indeed a diffi-
cult detection problem for which only ad hoc solution have been
proposed [7].

This paper is organized as follows. The known results are de-
scribed in section 2, the problem is formalized in section 3 where
an mainly unrealistic (because too time consuming) maximum like-
lihood approach is proposed. In order to mimick the maximum
likelihood approach we introduce and analyze a more adequate
criterion in section 4. In section 5, we analyze the recovery prob-
lem for the traditional noise free case as well as the noisy case and
we conclude in section 6.

2. PREVIOUS RESULTS

Consider a set of � � -dimensional vectors K >
with � � � and

denote
�

the ( � , � ) matrix having these vectors as columns. Any
linear combinations � of these � vectors can then be written as :
� � � 


with



a � -dimensional vector of weights. In the sequel
we assume that the columns of

�
are normalized :

� K O �
G � P E Q R .

If � � � 
 �
, with


 �
having just a few non-zero components

it may be possible to recover

 �

from the knowledge of � [2], [3]
though this may be a difficult task. We mean that while

� 
 �� 
 �
has generically an infinite number of solutions in



, adding

a sparsity requirement may single out

 �

. On the other hand even
if the true solution


 �
is the unique sparsest solution, solving ( * � ,

can in general only be achieved using a combinatorial approach
that is essentially unfeasible since too time consuming.

A more realistic problem is therefore to seek conditions under
which


 �
is the unique solution to :

� � ��
� 
 � / ! # $ # & � 
 � � ( 5 7 ,
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with � � � � �
. Minimizing the � �

norm of the components of the
representation is much simpler than minimizing the sparsity, 	 � � �

.
It leads to a convex program that can be transformed into an easy-
to-solve linear program. To state the sufficient sparsity conditions
to be satisfied by

� �
, we define the coherence � of the set of

vectors � � � �
to be [8]:

� � � � 	� �� � � � � � � � � � (1)

i.e. the maximal inner product between two distinct vectors. In
[2] this problem is considered when

�
is the concatenation of two

orthonormal matrices and it is shown that if :

� � � � � � �� 	 � � �� �
(2)

then
� �

is the unique minimum point of (LP) with � � � � �
. This

also establishes that
� �

is the optimum of ( � �
), since if a spars-

er solution existed it would also satisfy the condition above and
one would arrive at a contradiction. This result has been slightly
improved in [3] but still for the same limited class of

�
-matrices.

More recently, in [4] and [5] it has proven that the bound (2) is
also valid for

�
matrices with an arbitrary number � of columns

or the concatenation of any number of orthogonal matrices. Of
course when � increases, M increases as well and the bound in
(2) decreases.

It is worth noting that (2) is independent of the magnitudes of
the nonzero entries of

� �
. Being able to

� �
appears to be only a

matter of structure, of angles between vectors. In the sequel where
we will take : � � � � � � �

with
�

is a Gaussian vector with mean
zero and covariance matrix � � ! , this will no longer be true, the
relative magnitudes of the nonzero entries of

� �
and � will play a

major role. It is only for � much smaller than the smallest entry of� �
that one can expect to recover the expansion, in a sense to be

be defined.

3. PROBLEM FORMULATION

3.1. Model and optimal solution

One observes � � � � � � �
with

� � $ 	 & � � � ! �
and one knows

that the number of nonzero entries in
� �

, denoted
� � � � �

, satisfies
(2). In the absence of noise, for � � & , the program (LP) has
then an unique solution point

� �
. In the presence of noise, the

recovery of the true model can only be expected for high signal to
noise ratios, i.e. small � or large non-zero entries in

� �
. Let us

formalize this observation.
One has to decide upon both the number of nonzero compo-

nents in
�

and upon their values. A maximum likelihood approach
applied to this problem would consist in the following steps.

For each � , the potential number of components, going from �
to the integer part of

�
� 	 � � �� �

, select the � columns that realize :

) + -.
� � �

���
� � � � � �

�
� �� (3)

/ � 0 � � 0 � � 1 1 1 � 0 � � � � � � � � 1 1 1 � � �
where the minimum is taken over all possible subsets of � column-
s. Denote �  � the minimum of (3) and retain the order �  that
minimizes for instance Akaike’s criterion :

�  � # % ' ) + -� �� �  � � � � � (4)

where we assume to know � � . This procedure is extremely time
consuming. Its complexity is similar to solving ( � �

) in the noise-
free case, a possibility that we excluded when we switched to the
more realistic � �

-norm-“sparsity”. We therefore seek a similar ap-
proach in the noisy case.

3.2. The LP solution

In the presence of noise, when � � � � � � �
, the optimum of (LP)

has generically 5 nonzero entries since no sparser solution exists
generically. One can however expect that for � small enough, the� � � � �

largest, in absolute value, components correspond to the
nonzero entries of

� �
, while the others are induced by the noise.

Applying some pruning to the components of the optimum to null
those that are below a threshold could thus lead to the recovery of
the true expansion. In the linear regression analysis literature this
is known as elimination of variables.

We do not investigate this approach as little can be said about
the way the degenerate optimum

�  � � �
of (LP) in the noise-free

case evolves as � drifts away from
� � �

. This is due to the fact that
for

� � & the optimum of the dual of (LP) is undetermined and it
is thus impossible to know a priori which additional components
in the optimum point of (LP), the primal, will become non-zero.

3.3. A more realistic solution

The natural extension to the present context of the � �
-norm-“sparsity”

approach in the noise-free case is indeed :

) + -.
� � � � 7 1 8 1 9 � � � � � � ��

� )
� (5)

with
� � � �� � < �

� �� , in the noisy case. The constraint in (5) is
closely related to the maximum likelihood criterion (3) and as we
will point it out below the � �

-norm has much to do with the penalty
term in Akaike’s criterion (4).

This is a convex optimization problem that is equivalent to :

) + -.
�� � � � � � � ��

� + � � � � 	 - = �

for an adequately chosen parameter
+ > & . Indeed if

+
is taken

equal the inverse of twice the Lagrange multiplier of the constraint
in (5) at the optimum, then both problems have the same optimum.
Now (QP) is in turn identical to :

) + -.
� � � � ��

7 1 8 1 9 � � � 	 � � � � � � / � + 	 1 - = �

with
� � � / � ) # 4 � � � � �

. The two programs (QP) and (DQP)
can be transformed into quadratic programs that are equivalent by
duality [9].

In the sequel, we mainly concentrate on (QP) which is the
most convenient for our purpose. It is worth noting the analogy
between (QP) and the combination of (3) and (4), the regulariza-
tion term in (QP) :

+ � � � �
replacing � � � in (4).

4. THE QUADRATIC PROGRAMMING APPROACH

Before we use (QP) to possibly recover a sparse solution
� �

satis-
fying (2) from the observation of � � � � � � �

, let us first discuss
its use in the noise free case.

When
� � & , one can take

)
� � & in (5) which is then i-

dentical to (LP), this corresponds to taking
+ � & 6 in (QP) and
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(DQP) as can be deduced from the results obtained below. In the
noise-free case, for

� � � � , the optimum of (QP) is thus
� �

just
like the optimum of (LP) provided

� �
satisfies (2). One can thus

expect that for
� � � small enough, this continues to hold. This

has indeed been established in [5].
For non-zero

�
, the optimum point, say �� �

, of (QP) achieves a
compromise between the two terms of the criterion

� � � � � � �� and� � � �
. At the optimum one therefore has :

� �� � �� � , and the best
one can expect is that �� �

and
� �

have their non-zero components
at the same locations and with the same signs. If this holds we say
that (QP) allows to recover

� �
.

This is also the best one can expect in the presence of noise.
Then the discrepancy between �� �

and
� �

is due to both
�

being
positive and the presence of the noise

�
.

In order to investigate the conditions under which recovery of� �
is possible we need to detail the optimality conditions of (QP).
They could be obtained in a quite traditional way by first trans-

forming the problem into a quadratic program (by doubling the
number of unknowns) and writing the first order necessary (Kuh-
n Tucker) conditions that are also sufficient since the problem is
convex. We adopt a more direct path. Since the criterion is non-
smooth at zero because of the presence of

� � � �
, we introduce

the sub-differential of
� � � �

[10], a set of vectors called the sub-
gradients, denoted � � � � �

:

� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � sign � � � �

if
� � �� � and

� � � � � � otherwise
�

where sign � � � � � � when
� � � � and sign � � � � � � � when� � � � . A necessary and sufficient condition (NSC) for

� 	 to be
a global minimum of (QP) is that the vector zero is a sub-gradient
of the criterion at

� 	 [10] :
� � 
 � � � � � 
 � � � � � 	 � � � � � � � � � � � � �

To write these NSC in a more usable way, we distinguish between
the non-zero components and the zero components of

� 	 . We de-
note � 	 the reduced dimensional vector built upon the non-zero
components of

� 	 . Similarly �
denotes the associated columns in�

. One then has e.g.
� � 	 � � � 	 . For the rows in (NSC) asso-

ciated with the non-zero entries � 	 , the sub-gradient is unique, e-
qual to the gradient and known, for the other rows the sub-gradient
takes any value in � � � � � � . The necessary and sufficient conditions
become :

� � � � � � � 	 � � �
sign � 	 � � � � � �

� � �� � � � � � 	 � � � � �  � � �
 � � � � � �
�

One can further establish that if �
is full rank and the inequalities

in � � � � �
�
satisfied strictly, then

� 	 is the unique minimum point
of (QP). The first of these relations then leads to :

� 	 � � � � � � � � � � � � �
sign � 	 (6)

with � � � � � � � � � �
� � a pseudo-inverse of �

.
The optimum of (QP) can only be obtained through an iterative

search and indeed the relation (6) is implicit since � 	 is present on
both sides. This relation however allows to compute � 	 and thus� 	 if one knows beforehand the indices and the signs of the non-
zero components of

� 	 . Together with (NSC � ), it is thus helpful to
test if a candidate point is indeed the optimum.

The last term in (6) is a bias term induced by the regularization
term in (QP), this bias can be removed if desired since its analytical
form is known.

5. RECOVERY CONDITIONS

5.1. The noise-free case

We are now ready to write the conditions under which the optimum
of (QP) allows to recover

� �
, when � � � � �

.
We denote �� �

this optimum that allows to recover
� �

in the
sense defined above and introduce � �

and � �
such that � � � � � �

� � � �
and similarly �� �

and � � �
that is identical to � �

. The NS
conditions at �� � � � �

yield :

� �� � � � � � �� � � � �
sign � � � � � � � �

� � �� � � � � � �� � � � � �
for � � �
 � � � � � � �

�

since � � � � � �
, the first relation gives :

�� � � � � � � � � �� � � � � �
sign � �

(7)

Replacing now �� �
by its value (7) in � � � � �

�
one gets :

� � �� � � � � �  � � �
 � �
and

� � � � ��
sign � �

(8)

Since � �
is full rank, if (7) and (8) are satisfied, the unique opti-

mum of (QP) allows to recover
� �

. As far as (7) is concerned, one
has to check that the sign of the resulting �� �

is indeed the same as
the sign of the true � �

. This is always possible by taking
�

small
enough since all the components in � �

are strictly different from
� .

It is (8) that is the true limiting condition. It can be called a
separability condition - since defining two hyperplanes : � � �

� � � � � � � � � �
- condition (8) says that the vectors � � �
 � �

must lie strictly in between these hyperplanes while the other vec-
tors � � 
 � �

lie in these hyperplanes, by the very definition of�
. In [5], we have shown, using results from numerical analysis,

that if (2) is satisfied then the vector
�

defined in (8) verifies the
constraints in (8).

This means that if
� �

a solution of
� � � � is sparse enough to

satisfy (2) then it is the unique solution point of (QP) for
�

small
enough and thus also the unique sparsest solution of

� � � � .

5.2. The noisy case

We proceed as in the previous section and replace in the NS con-
ditions � by

� � � � �
where we assume that

� �
satisfies (2). By

continuity one can expect that for
�
small enough and

�
adequately

fixed, the optimum �� �
of (QP) will have the same non-zero com-

ponents as
� �

with the same signs, since this is is true for
� � � .

With the same notation as above, the first part of the NS con-
ditions (7) becomes :

�� � � � �� � � � � � �� � � � � �
sign � �

� � � � � �� � � � � � �� � � � � �
sign � �

(9)

and the second part � � � � �
�
:

� � �� � � � � � �� � � � � � �  � � �
 � �

can be transformed, by substituting �� �
(9), into :

� � �� � � ' � � � � �� � � � � � � � � �� � � � � �
sign � � � � � �

� � �� � � ' � � � � �� � � � � � � � � �
� � �� � � � � � � � � � � �  � � �
 � �

(10)
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with
� � �� � ��

sgn �� �
and

� � � � � � �� � �� �� � �
.

The two conditions in (9) and (10) are again of quite different
nature. In (9) provided

�
is small enough for sign( �� � 	 �� �� �

)=sign
�� �

to hold, one can always choose
�

for the sign of ��� �
to be equal

to the sign �� �
. For admissible

�
the relation fixes an upper-bound

on
�
.
The conditions in (10) are satisfied if :

� � � � � � � � � � � � � � � � � � � �  �� �� � �
(11)

Since
� � � � � � � because

� �
satisfies (2) and thus (8), (11) holds

if
�

is taken large enough. Condition (11) fixes a lower-bound for�
.

To be sure that the two conditions in (9) and (10) can be met
simultaneously, it is important to observe that as

�
decreases, the

upper-bound on
�

- implicitly defined by (9) - increases and the
lower bound on

�
- implicitly defined by (11) - decreases. For

�
small enough it is thus always possible to find a domain in

�
in

which (QP) allows to recover
� �

. We have only been considering
the possibility to decrease the noise

�
but the conclusions are the

same if instead of decreasing
�
, one increases the magnitudes of

the non-zero weights in �� �
. It is of course the signal to noise ratio

that is important and that has to be large enough.

We have thus established that if the signal to noise ratio is large
enough the optimum of (QP) allows to recover the true

� �
, i.e. to

select the true subset of vectors, provided that
�

is adequately cho-
sen. This justifies the preference that should be given to (QP) over
(LP).

Remark :

The analysis has been qualitative making it quantitative seems
to be a difficult task. Indeed in conditions such as (11) :

� � � � � � � � � � � � � � � � � � � �  �� �� � �

while the random variables � � � �
are Gaussian with mean zero

and computable variance, the fact that they are not independent for
distinct values of

�
makes any evaluation of the probability of these

conditions to be satisfied simultaneously impossible, even though
a common lower bound for the right sides can be computed. The
same holds true for (9) :

��� � � �� � 	 �� �� � � � � �� �� �� � � 	 �
sign �� �

where a preliminary condition is that sign( �� � 	 �� �� �
)=sign �� �

.
The probability of this being true for a given variance � � of the
components in

�
together with the conditions in (11) seems again

extremely difficult to evaluate.
Indeed it seems that only the case where one assumes to known

that only one component in
� �

is non-zero seems to be amenable
to a complete analysis. Without loss of generality one can take
this unique component equal to one. The maximum likelihood
approach amounts to select :

� � � 	 
 � � 	 �
� � � � � � �

the maximum output of the matched filter. The probability of de-
tection, i.e. of

� � to be the index of the true unique non-zero
component of

� �
and the probability of false alarm are then com-

putable, at least in theory. There is no need for a more elaborate
algorithm such as (QP) though it is quite easy to show that if

�
is

tuned for the optimum of (QP) to have an unique non-zero entry,
then this entry has index

� � .

6. CONCLUSIONS

We have extended a deterministic result on recovery of sparse rep-
resentations to a stochastic context by replacing the usual linear
program minimizing the � �

-norm of the weights by a quadratic
program depending upon a regularization parameter

�
that allows

to adapt the criterion to the signal to noise ratio and encompasses
the linear program as a special case.

The problem amounts to consider a regression model in which
one has to choose a very small subset of regressors out of a very
large set of possible candidate regressors. We have shown that pro-
vided the true number of regressors satisfies condition (2) and the
signal to noise ratio is large enough, solving the quadratic program
for an adequately tuned regularization parameter leads to the true
subset of regressors.

For this quite general problem we have obtained qualitative
feasibility results. Further investigations on more specific prob-
lems can be conducted in a number of directions. If the true num-
ber of regressors is known a priori, it may be possible to perform
a more precise analysis and to investigate how far a well tuned
(QP) algorithm is from the optimal but cumbersome maximum
likelihood approach. The case where

� � � �  � � is feasible a-
long the lines described above but of little interest, but the case� � � �  � �

is already challenging. We have considered
�

to be
Gaussian, hence the � � norm and the (QP) criterion but other mod-
els for

�
may be of interest as well.
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