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ABSTRACT

A fast and approximative method for estimating continuous-time
stochastic disturbance signals, described as continuous-time au-
toregressive moving average processes, from discrete-time data is
presented. First, it is shown how these processes can be regarded
as continuous-time autoregressive processes and the relation be-
tween the two types of processes is derived. The relation is then
used for mapping estimated autoregressive parameters from an in-
strumental variable approach onto autoregressive moving average
parameters. The procedure provides a solution to the estimation
problem that preserves the continuous-time parameterization.

1. INTRODUCTION

Continuous-time stochastic system descriptions are important ma-
thematical tools for modeling stochastic signals and stochastic dis-
turbances in continuous-time, see, e.g., [1-5]. In this paper, contin-
uous-time autoregressive moving average (CARMA) processes are
studied with special interest. A CARMA process is defined as

A(p)y(t) = C(p)e(?), )
where
Alp) =D ap™, (@)
=0
Clp)=> eip™ 7, 3)
7=0

where n > m, A(p) has all zeros in the left half plane, p denotes
the differentiation operator with respect to time, and

E{e(t)e(r)} = >\2(5(t - 7). 4

Without loss of generality it is assumed that ap = 1. An important
interpretation of the CARMA process is that it can be thought of
as the underlying process for the spectrum

. C(iw)|?

=\? [C W) . 5
P =X TG ®
The main purpose of the paper is to find a fast and reliable esti-
mator for the parameters {a; };—; and {c;}7_,, based on discrete-
time data {y(¢h)}3_,, where h denotes the sampling interval. An-
other important reason for studying this problem is that its solution
is also the solution to the problem of estimating continuous-time
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AR (CAR) process parameters from discrete-time data corrupted
by discrete-time measurement noise.

One possibility is to transform the CARMA process by instan-
taneous and exact sampling, see [6,7], into a discrete-time ARMA
process, estimate the discrete-time parameters and then transform
them into continuous-time. The discrete-time parameters can be
estimated using, e.g., the prediction error method, see [8], which
yields consistent and statistically efficient estimates. This indirect
approach is considered in [9], where also the inherent difficulties
of estimating CARMA parameters are discussed.

When it comes to the mapping between the discrete-time and
the continuous-time parameters, the relation between the poles is
well-known through the exponential function. There is, however,
no closed form expression for the relation between the zeros, see
[9] and the references therein. Another possible drawback with
an indirect approach using the prediction error method is that a
nonlinear minimization problem has to be solved.

An interesting question is if something can be gained by keep-
ing the continuous-time parameterization, i.e., by using a direct
approach. A simple direct approach is to replace the differen-
tiation operator in (1) with the delta operator § = (¢ — 1)/h,
where g denotes the forward shift operator, form a linear regression
model and estimate the parameters with the least squares method,
see [10]. However, due to the special structure of the CARMA pro-
cess that includes unknown derivatives of e(t), this approach is not
possible to apply. On the other hand, this approach is successful
for estimating the parameters in CAR processes, see [10-12]. An
idea is therefore to investigate if it is possible to rewrite a CARMA
process as a CAR process. If so, the CAR parameters could be es-
timated as in [10-12] and then be transformed into the searched
CARMA parameters. In most cases, this approach is expected to
be less accurate, but considerably faster, than the indirect approach
using the prediction error method. The estimates given by the ap-
proach proposed here can also be used as initial values in the non-
linear minimization problem that has to be solved when using the
prediction error method.

2. PROCESS APPROXIMATION

It is well-known that an ARMA process can be written as an AR
process of infinite order, and depending on the locations of the
poles and zeros of the ARMA process, a reasonable approximation
can in practice be given by a finite order AR process, [13]. Here,
this is done for the corresponding continuous-time case, i.e., the
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CARMA process (1) is approximated by the CAR process

Alp)y(t) = e(t) (6)
of order n > n, where
n .
Alp) = "™ @
i=0

with A\g = 1.
First, (1) is written on the form

)= cp™e(t) (H ]p+1) ), ®
j=0

where it is assumed that ¢,,, = 1 and |d;| < 1, Vj. It follows that

zmj " (). ©)

Now, (9) is solved with respect to pe(t) and the result is used in
(8) which gives

(1= cm—1p)A(p)y(t) = (1 — em—1p) Z
+ cm_lp e(t) + e(t). (10)

The CAR part in the left hand side of (10) is of order n+1, whereas
the continuous-time MA (CMA) part in the right hand side can be
expressed as

erle(t) +...+ fzpze(t) +e(t), 11

fmt1p
where fa,. .., fm+1 are functions of {c; };”:_01. Moreover, fi, i =
2,...,m + 1, consists of sums of O(d1ds - - - d;) terms.

The above procedure is now repeated, i.e., both sides of (8) are
differentiated twice, the resulting description is solved for er(t),
and the result is substituted back into (10). The CAR part of the
resulting process is of order n + 2, whereas the CMA part can be
written as

m—+2 3
gmr2p™ Te(t) + ...+ gapTe(t) + e(t), (12)
where g;, 1 = 3,...
terms.

If the procedure is repeated k times, the CAR part of the re-

sulting process is of order n + k and the CMA part has the form

,m + 2, is built of sums of O(d1ds - - - d;)

Ymirp" e(t) + s e(t) +e(),  (13)
where the function v;, 7 = 1 4+ k, ..., m + k, is built of sums of
O(dydz - - - d;) terms. Since |d;| < 1, V4, (13) can be approxi-
mated by e(t) for rather moderate values of k, which means that
the resulting process can be regarded as a CAR process of order
n + k. The smaller values of {|d;|}72, the smaller k is needed,
and the restriction |d;| < 1, Vj, simply means that the zeros of (8)
are located outside the region [—1, 1].

2.1. Second order case

The procedure of finding an approximation to a CARMA process
in form of a CAR process is exemplified for the second order case,

(p* + arp + az)y(t) = (dp + )e(t), (14)
where |d| < 1. It follows that
(p” + a1p® + asp)y(t) = (dp* + p)e(t). (15)

Solve this equation for pe(t) and substitute the result back into
(14) to get

(—dp® + (1 = dar)p” + (a1 —
= (1 - d*p*)e(t).

Except for the term —d?p2e(t), this looks like a CAR(3) process.
Now, repeat the above procedure, i.e., write (14) as

daz)p + az)y(t) a6

(p* + ar1p® + azp”)y(t) = (dp® + p°)e(t), (17)

solve for p?e(t) and substitute the result back into (16) to get

(¢12p4 + (d2a1 — cl)p3 +(1+ d*as — dal)p2

s 3 (18)
+ (a1 — da)p + az)y(t) = (1 +d’p")e(t).
This resembles a CAR(4) process, except for the d®p® term. If the
procedure is repeated k times, the process

((=d)*p*™* + arp™* + .. + asrn)y(t)

19
R ) "
is obtained. Since |d| < 1, the right hand side can be approximated
by e(t), which means that the process can be regarded as a CAR
process of order 2 + k.

The spectrum of the CARMA process (14) is shown in Fig. 1
together with the spectra for the approximate CAR processes given
by (19), with the right hand side approximated by e(t), for k = 1,
2 and 4, for a; = 2, a2 = 2 and d = 0.05. The spectra are plot-
ted for frequencies less than the Nyquist frequency when using the
sampling interval h = 0.01 s for sampling the continuous-time
processes. It is evident that the true CARMA spectrum is well
described by the CAR spectra for frequencies up to the break fre-
quency w = 20 rad/s, and that the best description is given by the
spectrum corresponding to k = 4. However, for higher frequen-
cies, the best description is given by the spectrum corresponding
tok =1.

3. CAR PARAMETER ESTIMATION

After approximating the CARMA process (1) with the CAR pro-
cess (7), the CAR parameters {\; }_; are to be estimated from the
discrete-time data {y(¢h)}7_;. One possibility of estimating the
parameters is to use the asymptotically (N — oo and h — 0) con-
sistent instrumental variable approach described in [12]. There, the
rth order differentiation operator p” is approximated by the differ-
ence operator

= % Z Forsq", (20)
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Fig. 1. The spectrum for (14) (solid) and the spectra for (19), with
the right hand side approximated by e(t), for k = 1 (dashed), 2
(dash-dotted) and 4 (dotted), for a1 = 2, a2 = 2 and d = 0.05.

where ¢ is the forward shift operator. In order to get an exact
differentiation as h — 0, the weights {r s } have to fulfill certain
conditions, see [12]. Then, by introducing the regression vector
and the instrumental variables

@" (th) = [=D"y(th), —y(th)] @D
and the instrumental variables
z(th) = [y(¢h),

the estimates {\;}7_, are found as

y(th—nh+h)]", (22

M

N -1
= (Z z(eh)¢T(zh)> <Z z(Zh)D”y(Zh)). (23)

=1 =1

A
4. PARAMETER MAPPING

Once the CAR parameters {); }7_, in (6) are estimated, the cor-
responding CARMA parameters {a;};—; and {c¢;}}L, in (1), or
{ai}i=1 and {d;}7%, in (8), can be given by a suitable mapping
function F : R" — R™™. It is nontrivial to find an expression
for F that holds for all , n and m. Therefore, the strategy for
finding F, which is the same for all , n and m, is illustrated next
for the second order case.

4.1. Second order case

Assume that the CARMA process (14) is written in the form (19),
and that k is sufficiently large so that it is possible to consider (19)
as the CAR(2 + k) process

(p2+k + ﬁllerk + .4 Begr)y(t) = v(t), @4

where 8; = a;/(—d)* and v(t) = e(t)/(—d)*. Further, as-
sume that its parameters (31, . .., J24 are estimated by using the
instrumental variable method described in Section 3. The esti-
mated CAR parameters will depend on the unknown and searched
CARMA parameters a1, a2 and d, giving the system of equations

PO = p, (25)

where

B, = (1) =1, k+1 (26)
B0 =(—1)7d"7 =2, k+2 (7
P10 =Pri21 =0, (28)

0 = [al GQ}T, (29)

_ A B (DT =1,k (30)
Fia=as,  1=k+1,k+2

The system of equations (25) is linear in the CAR parameters a1
and a2 but nonlinear in the CMA parameter d, and the estima-
tion problem can therefore be regarded as a separable least squares
problem, [14]. This does not hold only for the second order case,
but for all n, n and m. As a first step, consider the loss function

V(0,d) = |n— @] 31

from which an estimate of @ as a function of d is obtained as

0(d)=o"p, (32)

where @' denotes the pseudo-inverse of ®. Then, as a second
step, the estimate (32) is inserted into (31) to get the concentrated
cost function

J(d) = V(0(d),d) = [|(I — 2" )plf? (33)
from which an estimate d is obtained as

d=arg min J(d). (34)
Finally, an estimate 6 can be given from (32) and (34).

5. NUMERICAL STUDIES

Data is generated by instantaneous and exact sampling, see [6], of
the second order CARMA process (14) where a1 = 2, a2 = 2 and
d = 0.05, with sampling interval h = 0.01. The noise intensity \*
in (4) is chosen such that y(¢) gets unit variance. The parameters
Bi, ..., B2tk in the CAR(2 + k) process (24) are estimated from
the data using N = 10000 data points for £ = 1,...,4 using
the instrumental variables technique described in Section 3, with
the difference operator (20) chosen as the delta operator. The esti-
mated CAR parameters are then mapped onto the CARMA param-
eters as described in Section 4.1. The whole procedure is repeated
200 times in a Monte Carlo simulation. It should be mentioned
that some obviously erroneous estimates that occurred during this
simulation study were removed.

The results are illustrated in Fig. 2 and a number of observa-
tions can be made. For the estimate of a1, the variance is decreas-
ing when k is increasing. This is not the case for the estimate of
a2, where the variance is about the same, regardless of the value of
k. On the other hand, the variance for the estimate of a2 is lower
than the variance for the estimate of a1, for all considered values
of k. The biases for the estimates of a1 and a2 are about the same
and do not change considerably with k. For the estimate of d, the
variance is slightly decreasing when k is increasing, whereas the
bias is smallest for k = 2, 3.

A possible explanation to these results can be given by observ-
ing Fig. 1, where it is seen that the CAR process corresponding
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Fig. 2. The mean values and the empirical standard deviations for
the estimates of (a) a1, (b) a2 and (c) d as functions of k.

to k = 1 gives a better description of the CARMA spectrum for
higher frequencies than the CAR process corresponding to k = 4.
It is of course important that the CAR(2 + k) process gives a good
description of the CARMA spectrum for all frequencies. This sug-
gests that a low pass filtering of the data with a cut-off frequency
w ~ 20 rad/s might be fruitful.

Another explanation to the results in Fig. 2 is that the inaccu-
racy of the estimated CAR parameters in terms of bias and vari-
ance are mapped onto the searched CARMA parameters. Then
the question is if it is always better to estimate more CAR param-
eters, since more estimated CAR parameters also mean a larger
total variance.

6. CONCLUSIONS

A fast and approximative method for estimating continuous-time
stochastic signals in forms of CARMA processes from discrete-
time data was presented. The CARMA process was rewritten as a
CAR process whose parameters were estimated using an instru-
mental variable technique, and then mapped onto the searched
CARMA parameters.
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