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ABSTRACT

Shape modeling and template learning form an important area of
research in image analysis. This paper addresses the problem from
a novel viewpoint – using a new class of semiparametric skew dis-
tributions.

Given several realizations of a shape, we represent its template
as a joint distribution of angle and distance from the centroid for all
points on the boundary. The shape boundary may be arbitrary and
irregular but simple. Its corresponding distribution is learned from
the scattered data points of the available boundary realizations. We
first obtained a bimodal distribution of the radii distances for given
angles and subsequently synthesize the overall joint distributions
according to some prior on the angles. We substantiate our pro-
posed methodology with a number of examples.

1. INTRODUCTION

The goal of shape modeling is to seek mathematical representa-
tions to capture the intrinsic morphologies of various shapes and
to account for their variability. Formally part of pattern theory,
whose formalism is to a large extent due to Grenander [1], it seeks
to quantify the structure of patterns present in an image. In re-
cent years, the problem has been approached in numerous ways
including rigid models [2] as well as flexible models [1, 3, 4, 5, 6].
While rigid models have been popular for many applications, their
inability to reflect the inherent variability of shapes (e.g., anatomi-
cal shapes) has led to other more flexible approaches such as inter-
site arc distributions [1] and active shape models [3], which are
deterministic/probabilistic hybrid models.

In contrast to all above approaches, we view the variability of
shape as one that allows realization contours to remain within a
certain neighborhood range around the mean. This in turn sug-
gests that for any given angle around a shape, a probability density
function may be found to capture the corresponding potential ex-
cursion of the curves at the given angle.

We specifically exploit a class of semiparametric skew sym-
metric distributions [7, 8, 9] due to potential skewness of data
which may arise in practical problems. Simulations show that the
method works equally well for non-skewed data.

The paper consists of a problem statement section given next.
In Section 3, we describe the probabilistic model we wish to de-
velop. In Section 4, we provide illustrating examples and finally
some conclusions in Section 5.

This work was supported by an AFOSR grant F49620-98-1-0190 and
by NSF CCR-9984067.

2. PROBLEM STATEMENT

Let a shape Si be given by a curve CSi(t)

CSi : I ⊆ R
+ → R × [0, π] (1)

and for convenience and clarity we take I ⊂ N (a sampled curve).
Given a set {CSi

j}j=1,...,N , we ask to provide a probabilistic
model for Si in terms of its radius (from the centroid) and angle
around. Note that alternatively we may view CSi(t) as a paramet-
ric representation

(x(t), y(t)) or
(√

x2(t) + y2(t), arctan(y(t)/x(t))
)

.

Given several realizations of a shape, learning is equivalent
to capturing all objects having closely similar shape realizations.
Note that heart shapes, for instance, when given in two images,
may differ due to occlusion, noise, clutter or difference in pose.
Despite this variability, it is reasonable to assume that these dif-
ferent realizations share much in common, and hence be able to
model all of the deviations and capture the essence of the shape.

When normalized to a pre-specified area, the boundaries of
these realizations will lie within some standard neighborhood as
illustrated in Fig. 1(b). Combining all such realizations is tanta-
mount to assembling a cloud of points in the neighborhood of a
template boundary as shown in Fig. 1(c). By sampling the realiza-
tions at specified angles, the points in the cloud may be assumed
iid or at most may be modeled as a first order Markov process.
The boundary of any realization of a given shape will be a subset
of points within a tubular cloud, interpreted as a permissible shape
domain, as shown in Fig. 1(c).

Si∼{(
√

x2 + y2
i + nri , arctan(y/x)i + nθi

)} (2)

where nri and nθi
represent variability within the admissible do-

main.
Based on these realizations, the points in the cloud at a given

angle may be shown to be distributed around the template bound-
ary according to a skewed distribution p(r, θ). Note that the non-
skewed densities are a particular case of skewed representation.

3. SHAPE ANALYSIS

As mentioned earlier, in this paper, we will be investigating a class
of closed shapes in the same view as those in Fig. 3.

For convenience, we adopt a polar coordinate system (r, θ).
In addition, we choose to translate the origin to the centroid of the
shape.
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Fig. 1. (a) Heart shape; (b) Some realizations superimposed on
each other; (c) Sampled superimposed realizations; (d) Constituent
realizations.

Following the determination of a centroid for a given shape,
we proceed to randomly sample it at angles θ ∈ [0, π] according
to a prior distribution p(θ). For a given fixed θ = θI , we iden-
tify all samples lying within an ε-neighborhood of θI . In light of
the nature of the shape, we can associate two clusters of samples
on either side of the centroid at θI , with a relative phase differ-
ence of π. The two clusters are distributed according to a bimodal
conditional distribution (for fixed θI ), p(r|θI). We propose the
following model to represent such a class of conditional distribu-
tions:

p(r|θ) = 2ωf

(
r − ξ

σ

)
H

(
PK

(
r − ξ

σ

))
(3)

where f is any symmetric pdf and H is any cdf of a continuous
random variable that is symmetric around zero and PK is K-order
polynomial. ξ and σ are respectively the location and scale pa-
rameters. ω is a parameter that makes p(r|θ) a valid density. One
can show that such a formulation affords much flexibility such as
multimodality, skewness, symmetry, etc. [10].

Upon specifying the conditional distribution model, and us-
ing a data sample of sufficient size, we may proceed to learn the
density by standard techniques, for instance, maximization of the
log-likelihood function:

L(ξ, σ, α) = m log (2ω(ξ, σ, α)) +

m∑
i=1

log f

(
ri − ξ

σ

)

+
m∑

i=1

log H

(
PK

(
ri − ξ

σ

))
, (4)

where m is the number of radius samples, r1, . . . , rm, while the
unknown parameters are the location parameter ξ, polynomial co-
efficients α, and the standard deviation σ.

3.1. Prior Distribution

The challenge in determining a prior for the angle in a shape de-
scriptor is the presence of singularities such as shown as a cusp in
Fig. 1(a). Given the presence of such events and their nonuniform
occurrence throughout, suggests a piecewise uniform or piecewise
tapered uniform distribution for the prior as shown in Fig. 2.

p(θ)

θ0 π/2 π

P
1

P
0

p(θ)

θ0 π/2 π

P
0

P
1

(a) (b)

Fig. 2. Prior distribution: (a) Piecewise uniform; (b) Piecewise
tapered.

3.2. Template Learning

With a prior p(θ) in hand together with a conditional density for
r, p(r|θ), we are in a position to construct the overall density for
a shape. If we discretize the angle space, the overall shape may be
represented by the following joint density p(r, θ):

p(r, θ) =
∏

θ∈[0,π]

p(r|θ)p(θ) (5)

Note that the nature of the distribution will dictate the parameters
of importance for template extraction, e.g., a mode may be more
appropriate for a skewed density. Hence, corresponding to each
angle, we estimate the modes of the posterior, which are assumed
to lie on the boundary. In the limiting case, where the number of
angle samples goes to infinity, the set of modes will constitute the
closed contour of our template.

3.3. Prior performance assessment

In order to assess the quality of a prior selection, we evaluate the
cumulative deviation between an “ideal”1 shape and learned tem-
plate with specific priors.

Before presenting the performance measure, we discuss the
relation between realizations and template. Let us denote the two
modes at a specified angle, θ, by r̂1(θ) and r̂2(θ), which repre-
sent the template boundary. For each realization from the data set,
corresponding to the same angle θ, the deviation of the boundary
points r1(θ) and r2(θ) from the corresponding modes is given by:

dri(θ) = ri(θ) − r̂i(θ). (6)

Hence, we can generate any realization in the permissible domain,
the tubular region, by adding the deviations dri(θ) to the template
corresponding to each angle.

As a performance measure, we may use the L2-norm of the
difference between the two shapes as defined below:

D =

√∫ π

0

(dr2
1(θ) + dr2

2(θ)) dθ. (7)

Discretization of angle space and considering some ε-neighborhood
of θ yield the form given by Eq. 8 for the departure of learned tem-

1Ideal shape is the realization of a shape as viewed from a perfect angle
in noise-free environment.
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plate from the ideal shape.

D =

√ ∑
θ∈[0,π]

∑
θi∈Nθ

ε

(
dr2

1,θi
+ dr2

2,θi

)
, (8)

where Nθ
ε is some ε-neighborhood around θ and dri,θj

is the de-
viation for the i-th mode at a given angle θj in Nθ

ε .

4. EXPERIMENTAL RESULTS

In this section, we give some practical applications of the proposed
technique. We have tried to give diverse examples related to var-
ious fields of applications instead of only focussing on medical
applications. These results demonstrate the generality and effec-
tiveness of the proposed method. Instead of working with syn-
thetic images, we have concentrated more on real images as our
test cases. Later in the section, we describe how to simulate differ-
ent realizations using the model of Eq. 5.

We learn templates for three shapes acquired from real images
identified as heart, brain, and star which are shown in Fig. 3, us-
ing different priors. The templates learned with uniform prior are
given in Fig. 4, while those with piecewise tapered uniform prior
are illustrated in Fig. 5. Note that we took 20 angle samples in each
case except for the Star, which is learned with only 10 samples. In
addition, we used third order polynomial with normal distribution
in Eq. 3. Templates learned with 100 samples are shown in Fig. 6.
The performance measure D for the three cases is tabulated in Ta-
ble 1. It is obvious both visually and from the performance mea-
sures that piecewise uniform prior gives better results than uniform
prior. In particular, in the case of the heart, the performance mea-
sure is approximately the same for both priors. This is the price
that we pay, when we try to weight certain directions more than
others while using small sample size and hence end up degrading
a shape in other directions.

Table 1. PERFORMANCE MEASURE D FOR THE THREE CASE

STUDIES

Case Study Prior for angle θ D (×103)
Star Uniform 2.1

Piecewise uniform tapered 1.6
Brain Uniform 0.5

Piecewise uniform tapered 0.4
Heart Uniform 0.205

Piecewise uniform tapered 0.211

4.1. Sampling from models

Using the learned conditional distribution and the prior, we can
generate all possible realizations of the shape. This is demon-
strated by simulating a cloud of points according to the parameters
learned for a circle with two singularities (Fig. 7). The simulated
cloud is illustrated in Fig. 7(c), which clearly shows that the two
clouds are similar.

5. CONCLUSIONS

In this paper, we discussed a novel method for template learning,
which accounts for shape variations in different realizations, using

semiparametric skew-symmetric distributions. It involves the dis-
cretization of angle space, and then learning posterior density for
the radii given angle, chosen according to some prior. The shape
may be recovered by capturing the local maxima (modes) of the
posterior for all angle samples.

We presented several case studies related to different appli-
cation areas using real images. Based on computer simulations,
semiparametric skew-symmetric template learning appears to be
quite effective and robust method for capturing the variability in-
herent to shapes. It can capture the shape singularities to some
extent and may be applied to complex multi-loop templates using
higher order polynomial PK in Eq. 3. Since the joint distribution
p(r, θ) given by Eq. 5 represents the entire class of shapes that lie
in the permissible shape domain, the learned model can be used to
simulate any realization of the shape, .

The method can also be extended to 3-D shapes, which we are
currently investigating.
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(a)

(b)

Fig. 3. (a) Actual shapes: heart, brain, tumor, star and car; (b)
Corresponding realizations.

(a) (b) (c)

Fig. 4. Template learned using uniform prior: (a) Heart; (b) Brain;
(c) Star.

(a) (b) (c)

Fig. 5. Template learned using piecewise tapered uniform prior:
(a) Heart; (b) Brain; (c) Star.

(a) (b) (c)

(d) (e)

Fig. 6. Template learned with 100 angle samples. (a) Heart; (b)
Brain; (c) Tumor; (d) Star; (e) Car.

(a)

(b) (c)

Fig. 7. Shape simulation according to joint distribution of Eq. 5:
(a) Ideal shape – a circular shape with two singularities; (b) Re-
alizations; (c) Realizations simulated using parameters learned for
(b).
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