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ABSTRACT

Markovian models form a powerful tool for modelling

physical signals. In this approach, a signal generation model

is employed, and its parameters are estimated from signal

samples. In this paper, we present a novel signal genera-

tion model for Hidden Semi-Markov Models, HSMMs. Our

model results in a significantly easier and more efficient

parameters identification method. Instead of the constant

probabilities presently used for modelling state transitions,

we use state transition probabilities that are state-duration
dependant. We then develop a parameter identification al-

gorithm based on the maximum likelihood criterion.

Our numerical results show that our parameter identifi-

cation algorithm can successfully and more efficiently esti-

mate the actual values of the model parameters of an HSMM

signal.

1. INTRODUCTION

Hidden Markov Models (HMMs) have proved to be a pow-

erful tool in signal modelling, and have been widely used

in many engineering applications including speech process-

ing, signal estimation, queuing networks, etc., [1]. How-

ever, HMMs have a limitation in modelling the ‘state dura-

tions’ of physical signals. The state duration for each state

of an HMM is defined as the time spent in that state before

making a transition to another state. In an HMM, the prob-

ability of leaving a state is constant. Hence, it can be easily

shown that the density of state durations have the form of

a Geometrical probability mass function (pmf). However,

this Geometrical probability mass function is inappropriate

for modelling the state duration of a large class of physi-

cal signals. Therefore a more sophisticated class of Markov

models, called Hidden Semi-Markov Models (HSMMs), are

used, where the duration densities are modelled in some

non-Geometrical form. Generally speaking, HSMMs are

more powerful than HMMs, however, they are more com-

plex. Specifically, the parameter identification methods for

HSMMs are more complicated than HMMs.

In this paper, we present a novel signal generation model

for HSMMs, which leads to easier and more efficient pa-

rameter identification algorithms. We introduce a new vec-

tor variable to the traditional HMMs, named ‘state duration’

variable, dt. Given that the state at time t is i, the ith en-

try of dt, dt(i), denotes the time that the signal has spent in

state i until time t. We use state duration dependent tran-
sition probabilities in our model. This assumes the proba-

bility of transition from state i to state j is not constant and

depends on dt(i). We model the state durations using pa-

rameterized probability density functions. We will employ a

special mathematical representation of the signal state space

as in [1]. This facilitates the derivation of dt from dt−1.

Then, we present an algorithm for parameter identifica-

tion of HSMMs based on our signal generation model from

a given a set of observations from an HSMM signal. These

parameters are the state transition probabilities, the param-

eters of the state duration model and the parameters of the

observation density of each state. The problem of identifi-

cation of HSMMs is conceptually similar to the identifica-

tion of HMMs. There is a powerful method available in the

HMMs case, known as Baum-Welsh algorithm, which finds

the maximum likelihood estimate of model parameters us-

ing the Expectation-Maximization (EM) algorithm [2, 3].

This algorithm has been extended to the context of HSMMs

using either ‘explicit state duration modelling’ [4, 5, 3, 6]

or ‘parametric state duration modelling’ [7]. Current meth-

ods based on these two approaches have the major draw-

back of greatly increased computational load compared to

the HMM case. More precisely, if we let the maximum state

duration in an HSMM for all states be D time units, then it

can be shown that current approaches increase the memory

usage by a factor of D and the computation load by a factor

of D2/2, when compared to the EM algorithm for HMMs.

Since D is usually large in many applications (e.g., D = 25
in most speech processing applications), the computational

load of these algorithms become extensively high.

Our algorithm for identifying the model parameters of

an HSMM is a variant of the EM algorithm [2]. Our al-

gorithm is based on our new signal model, and finds the

local maximum likelihood estimate of the model parame-

ters. Our algorithm has the advantage of requiring signifi-

cantly much less computational effort compared to available

methods. Therefore, our identification algorithm is useful in

a larger set of practical applications. Also, our method does
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not result in over parameterizations of the model and em-

ploys only N2 + 3N parameters, which is very close to the

N2 + 2N parameters used in an HMM.

The rest of this paper is organized as follows: In section

2, we present our signal model for HSMM. Our algorithm

for off-line identification of HSMMs is presented in section

3. In section 4, we present numerical results of implement-

ing our algorithm for identification of HSMMs. In section

5, we present a conclusion of the presented methods.

2. SIGNAL MODEL

We consider a signal model where the state of the signal at

time t, st, t ∈ N, is determined by a finite-state discrete-

time semi-Markov chain. We assume the initial state s1 is

given or its distribution is known. The state space has N
distinct states. Without loss of generality, we assume st

takes its values from the set {e1,e2, · · · ,eN}, where ei

is a N × 1 vector with unity as the ith element and zeros

elsewhere. The semi-Markov property of the model implies

that the probability of a transition from state ej to ei at time

t depends on the duration spent in state ej prior to time t.
This can be written as

P(st+1 = ei|st = ej , st−1 = ek, · · · , s1 = el)
= P(st+1 = ei|st = ej , dt(j)) (1)

where dt(j) is defined as the duration spent in state j prior

to time t. For each time t, we define the ‘state duration’
vector dt of size N × 1 where

dt(j) =
{

dt(j) if st = ej

1 if st �= ej

(2)

dt(j) is easily constructed from dt−1(j) as dt(j) = st(j)×
dt−1(j) + 1, which can be written in vector format as

dt = st � dt−1 + 1, where � denotes element-by-element

product.

We model the state duration densities (i.e. density of

dt(i)’s) with a parametric probability mass function, pmf,

φi(d). That is, the probability that st stays exactly d time

units in state i is given by φi(d). φi(d) should be selected

such that it adequately captures the properties of the signal

under study. Hence, the selection of φi(d) should be jus-

tified by some evidence from samples of the signal. Even

though the state durations in a semi-Markov chain are in-

herently discrete, it is noted in many studies that continuous

parametric density functions are also suitable for modelling

state durations in many applications, including speech pro-

cessing [6, 7]. In this approach, state durations are modelled

with the best fitting parametric probability density function,

pdf, and then the discrete counterpart of this density func-

tion is taken as the best pmf. That is, if φi(x) is the contin-

uous pdf of the state duration of the ith state, then the prob-

ability that the signal stays in state i for exactly d time units

is given by

∫ d

d−1

φi(x)dx. Since negative state durations are

not physically meaningful, it is usually more appropriate to

select φi(x) from the family of exponential distributions [6].

Specifically, the family of Gamma distributions are consid-

ered in [7] for speech processing applications. In this paper,

we assume that φi(x) is a Gamma distribution function with

shape parameter νi and scale parameter ηi, that is

φi(x) =
ηνi

i

Γ(νi)
xνi−1e−ηix (0 < x < ∞) (3)

where Γ is the gamma function. The mean and variance

of φi are νi/ηi and νi/η2
i respectively. Note that the sig-

nal model we present here is applicable with minor changes

to HSMM signals whose state duration densities are mod-

elled with a pdf other than Gamma. Furthermore, let Φi(x)
denote the cumulative distribution function of φi(x), i.e.,

Φi(d) =
∫ d

0

φi(x)dx.

We construct our model for HSMMs using state dura-

tion dependant transition probabilities. We define the state

transition matrix Adt
, as Adt

= [aij(dt)] where aij(dt) =
P(st+1 = ej |st = ei, dt(i)). Clearly, aij(dt)’s are not con-

stant and change in time; however, we will denote aij(dt)
with aij for notational simplicity. For the diagonal elements

of Adt
, aii’s, it is easily shown that

aii =
1 − Φi(dt(i))

1 − Φi(dt(i) − 1)
(4)

The probability that the state process st stays in the ith state

during its visit to this state for exactly d time units is given

by (1− aii(d)) ·∏d−1
k=1 aii(k). By substituting aii from (4),

it is easily shown that the probability density function of the

state space durations is actually equal to the selected model

φi(d).
For i �= j, aij is the probability of leaving state i and

entering state j, and is given by

aij = (1 − aii) · ao
ij (5)

where ao
ij = P(st+1 = ej |st = ei, i �= j) is defined as the

probability of transition from state i to state j, knowing that

the signal leaves state i. We write the matrix Adt
in terms

of a diagonal matrix P (dt) representing the recurrent state

transition probabilities, and a constant matrix Ao represent-

ing the non-recurrent state transition probabilities.

Adt
= P (dt) + (I − P (dt))Ao (6)

pij(dt) :=

⎧⎨
⎩

0 ,i �= j

1 − Φi(dt(i))
1 − Φi(dt(i) − 1)

,i = j
(7)
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Note that ao
ij’s are constrained to

∑N
j=1 ao

ij = 1. Since

P (dt) is a diagonal matrix, one can show that∑N
j=1 aij(dt) = 1 for all t.

Hence, the hidden state process st evolves in time based

on the following equations:

st+1 = Adt
· st + vt+1 (8)

Adt
= P (dt) + (I − P (dt)) · Ao

dt+1 = st+1 � dt + 1

where vt+1 is a Martingale increment; that is,

E(vt+1|s1, s2, · · · , st) = 0.

The state process st is hidden and is not observed. We

observe the observation process yt, where the probabilis-

tic distribution of yt is determined by the state at t, st. In

this study, we assume that for each state i, yt has a normal

distribution. That is, if st = ei then

bi(yt) := P(yt|st = ei) = N (yt;µi, σ
2
i ) (9)

where µi and σ2
i are the mean and standard deviation of

the observation process yt for state i. yt may be written as

yt = 〈µ, st〉 + 〈
√

σ2, st〉wt where µ =
[
µ1, µ2, · · · , µN

]
,

σ2 =
[
σ2

1 , σ2
2 , · · · , σ2

N

]
, 〈., .〉 denotes the inner product and

wt is Gaussian white noise with zero mean and variance 1.

2.1. Model Parameterizations

There are N2 + 3N parameters that define an HSMM sig-

nal in our model. These parameters are the N 2 − N non-

recurrent transition probabilities ao
ij , the mean and variance

of the observation process, µi and σ2
i for 1 ≤ i ≤ N , and

the parameters of the state-duration densities ηi and νi for

1 ≤ i ≤ N . We define θ as a vector containing all the

model parameters; θ = [µ1, . . . , µN , σ2
1 , . . . , σ2

N , ao
12,

. . . , ao
N−1,N , η1, . . . , ηN, ν1, . . . , νN ]′

3. OFFLINE IDENTIFICATION OF HSMMS

Given a set of observations from an HSMM signal, YT =
{y1, y2, . . . , yT }, we like to estimate θ, the parameters of

the HSMM model. The algorithm we use is a variant of

the EM algorithm [2]. We first initialize θ to an initial

guess. Analogous to the EM algorithm for identifications of

HMMs [3], in the E step of the algorithm we define a set of

probabilistic measures, which describe the evolution of the

hidden state variable st. We define the ‘forward variables’

αt(i) as αt(i) := P(st = ei, y1, y2, . . . , yt|θ) . Let d̂t =[
d̂t(i)

]′
, where d̂t(i) = E(dt(i)|st = i,θ, y1, y2, . . . , yt)

is our estimate of the state-duration variable for state i at

time t. d̂t is initialized to
[
1 1 · · · 1

]′
for t = 1. We

construct d̂t+1(i) iteratively as

d̂t+1(i) = 1 + E(st(i)|y1, y2, . . . , yt,θ) · d̂t(i)

= 1 +
αt(i)∑N
i=1 αt(i)

· d̂t(i), 1 ≤ i ≤ N

The state transition matrix Adt
is updated for each t as

Adt
= P (d̂t) + (I − P (d̂t))Ao.

The forward variable αt(i) for t = 1 is initialized to

the given initial state, i.e., α1(i) = s1(i) for 1 ≤ i ≤ N .

The other forward variables are constructed iteratively as

αt+1(j) =
[∑N

i=1 αt(i) · aij

]
bj(yt+1).

Similarly, the backward variables βt(i) are defined as

βt(i) := P(yt+1yt+2 . . . yT |st = ei,θ). βt’s are computed

by initializing βT (i) = 1 for 1 ≤ i ≤ N , and constructing

the other variables iteratively as βt(i) =
∑N

j=1 βt+1(j) ·
aij · bj(yt+1).

In the M step of the algorithm, the model parameters are

updated to the maximum likelihood estimate of the model

parameters computed from the forward-backward variables

in the E step. There are different approaches to obtaining

the update equations, which all result in the same update

equations [3]. We use the concept of counting the event

occurrence to find the update equations. It can be easily

shown that the update equation for ao
i,j’s, µi’s and σ2

i ’s are

identical to the formulae presented in [3] for identification

of HMMs. We estimate the mean and variance of state-

duration pmf’s for state i, µi,s and σ2
s,i as

µs,i =

∑T−1
t=1

(
αt(i)

∑N
j=1,j �=i aijbj(yt+1)βt+1(j)

)
d̂t(i)∑T−1

t=1

(
αt(i)

∑N
j=1,j �=i aijbj(yt+1)βt+1(j)

)

σ2
s,i =

T−1∑
t=1

⎛
⎝αt(i)

N∑
j=1,j �=i

aijbj(yt+1)βt+1(j)

⎞
⎠ (d̂t(i) − µs,i)

2

T−1∑
t=1

αt(i)

N∑
j=1,j �=i

aijbj(yt+1)βt+1(j)

Then, ηi and νi are computed as

νi = µ2
i,s/σ2

i,s ηi = µi,s/σ2
i,s (10)

The algorithm repeats the E and M steps, until θ converges

to a constant vector. Our forward-backward algorithm has

the computational complexity of O(N 2T ) per pass and re-

quires a memory of 3NT because all the forward-backward

variables and estimate of the state duration variables need

to be stored.

It is noted that as t increases (decreases), αt’s (βt’s) de-

crease very fast, and can quickly exceed the numerical range

of any computer. To avoid this, we suggest to use a scaling

scheme similar to the scheme used in [3, 8] for the HMM
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Fig. 1. Parameter estimates versus the iteration number. The dotted lines show the actual values of the parameters.

Parameter Actual parameter values Initial parameter values

Ao

⎡
⎣

0 0.20 0.80
0.50 0 0.50
0.30 0.70 0

⎤
⎦

⎡
⎣

0.00 0.50 0.50
0.10 0.00 0.90
0.50 0.50 0.00

⎤
⎦

µ
[−10 0 10

]′ [−20 4 20
]′

σ2
[
8 8 8

]′ [
10 10 10

]′
µs

[
10 20 30

]′ [
15 15 15

]′
σ2

s

[
4 4 4

]′ [
10 10 10

]′

Table 1. Actual and initial values of the model parameters

used in our experiment.

case, where αt’s are scaled to sum up to one for all t. It can

be shown that this scaling has no effect on the final parame-

ter estimates.

4. NUMERICAL RESULTS

In this section, we present the numerical results of imple-

menting our algorithm for identifications of HSMMs. In

our experiment, the parameters of an HSMM signal with

N = 3 distinct states were estimated using the algorithm

presented in section 3. The total number of observations

was T = 10000. The actual and initial values of the model

parameters are given in table 1. Simulation showed that the

log-likelihood of the total observations YT given the param-

eters estimate θ, (i.e., log(P(YT |θ)), increased in each iter-

ation. This verifies that our algorithm finds the maximum-

likelihood estimate of the model parameters. The simula-

tion results show that all the model parameters converge to

their actual value after only a few iterations. Figure 1 il-

lustrates the case for three of the model parameters (ao
12,

µ3 and µs,1), where our estimates of these parameters are

plotted versus the iteration number.

5. CONCLUSION

We presented a novel signal generation model for hidden

semi-Markov signals. Our model captures the state-duration

densities in an HSMM using state duration dependent tran-

sition probabilities. We also presented a variant of the EM

algorithm for the identification of our model parameters.

Our identification algorithm finds the local maximum like-

lihood estimate of the model parameters. We also numer-

ically showed that our algorithm can successfully estimate

the actual values of the model parameters with significantly

less computational effort.
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