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ABSTRACT

Markovian models form a powerful tool for modelling
physical signals. In this approach, a signal generation model
is employed, and its parameters are estimated from signal
samples. In this paper, we present a novel signal genera-
tion model for Hidden Semi-Markov Models, HSMMs. Our
model results in a significantly easier and more efficient
parameters identification method. Instead of the constant
probabilities presently used for modelling state transitions,
we use state transition probabilities that are state-duration
dependant. We then develop a parameter identification al-
gorithm based on the maximum likelihood criterion.

Our numerical results show that our parameter identifi-
cation algorithm can successfully and more efficiently esti-
mate the actual values of the model parameters of an HSMM
signal.

1. INTRODUCTION

Hidden Markov Models (HMM:s) have proved to be a pow-
erful tool in signal modelling, and have been widely used
in many engineering applications including speech process-
ing, signal estimation, queuing networks, etc., [1]. How-
ever, HMMs have a limitation in modelling the ‘state dura-
tions’ of physical signals. The state duration for each state
of an HMM is defined as the time spent in that state before
making a transition to another state. In an HMM, the prob-
ability of leaving a state is constant. Hence, it can be easily
shown that the density of state durations have the form of
a Geometrical probability mass function (pmf). However,
this Geometrical probability mass function is inappropriate
for modelling the state duration of a large class of physi-
cal signals. Therefore a more sophisticated class of Markov
models, called Hidden Semi-Markov Models (HSMMs), are
used, where the duration densities are modelled in some
non-Geometrical form. Generally speaking, HSMMs are
more powerful than HMMs, however, they are more com-
plex. Specifically, the parameter identification methods for
HSMMs are more complicated than HMMs.

In this paper, we present a novel signal generation model
for HSMMs, which leads to easier and more efficient pa-
rameter identification algorithms. We introduce a new vec-
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tor variable to the traditional HMMs, named ‘state duration’
variable, d;. Given that the state at time ¢ is 4, the i en-
try of dy, d:(%), denotes the time that the signal has spent in
state ¢ until time t. We use state duration dependent tran-
sition probabilities in our model. This assumes the proba-
bility of transition from state ¢ to state j is not constant and
depends on d; (7). We model the state durations using pa-
rameterized probability density functions. We will employ a
special mathematical representation of the signal state space
as in [1]. This facilitates the derivation of d; from d;_1.

Then, we present an algorithm for parameter identifica-
tion of HSMMs based on our signal generation model from
a given a set of observations from an HSMM signal. These
parameters are the state transition probabilities, the param-
eters of the state duration model and the parameters of the
observation density of each state. The problem of identifi-
cation of HSMMs is conceptually similar to the identifica-
tion of HMMs. There is a powerful method available in the
HMMs case, known as Baum-Welsh algorithm, which finds
the maximum likelihood estimate of model parameters us-
ing the Expectation-Maximization (EM) algorithm [2, 3].
This algorithm has been extended to the context of HSMMs
using either ‘explicit state duration modelling’ [4, 5, 3, 6]
or ‘parametric state duration modelling’ [7]. Current meth-
ods based on these two approaches have the major draw-
back of greatly increased computational load compared to
the HMM case. More precisely, if we let the maximum state
duration in an HSMM for all states be D time units, then it
can be shown that current approaches increase the memory
usage by a factor of D and the computation load by a factor
of D?/2, when compared to the EM algorithm for HMMs.
Since D is usually large in many applications (e.g., D = 25
in most speech processing applications), the computational
load of these algorithms become extensively high.

Our algorithm for identifying the model parameters of
an HSMM is a variant of the EM algorithm [2]. Our al-
gorithm is based on our new signal model, and finds the
local maximum likelihood estimate of the model parame-
ters. Our algorithm has the advantage of requiring signifi-
cantly much less computational effort compared to available
methods. Therefore, our identification algorithm is useful in
a larger set of practical applications. Also, our method does

ICASSP 2004



not result in over parameterizations of the model and em-
ploys only N2 + 3N parameters, which is very close to the
N? + 2N parameters used in an HMM.

The rest of this paper is organized as follows: In section
2, we present our signal model for HSMM. Our algorithm
for off-line identification of HSMM:s is presented in section
3. In section 4, we present numerical results of implement-
ing our algorithm for identification of HSMMs. In section
5, we present a conclusion of the presented methods.

2. SIGNAL MODEL

We consider a signal model where the state of the signal at
time ¢, s, t € N, is determined by a finite-state discrete-
time semi-Markov chain. We assume the initial state s; is
given or its distribution is known. The state space has N
distinct states. Without loss of generality, we assume s;
takes its values from the set {e1, ez, - ,en}, where e;
is a N x 1 vector with unity as the i*" element and zeros
elsewhere. The semi-Markov property of the model implies
that the probability of a transition from state e; to e; at time
t depends on the duration spent in state e; prior to time ?.
This can be written as

P(si11 = eilsi = ej, 81 = ek, -~ ,51 =€)
= P(3t+1 = ei\st = €y, dt(j)) (1)

where d;(j) is defined as the duration spent in state j prior
to time t. For each time t, we define the ‘state duration’
vector d; of size N x 1 where

dt (]) if St = €5

di(j) = { 1 if s; #e; @
d:(j) is easily constructed from d;_1(5) as di(j) = s¢(j) x
di—1(4) + 1, which can be written in vector format as
d; = s ©di—1 + 1, where ® denotes element-by-element
product.

We model the state duration densities (i.e. density of
d.(i)’s) with a parametric probability mass function, pmf,
¢;(d). That is, the probability that s; stays exactly d time
units in state 7 is given by ¢;(d). ¢;(d) should be selected
such that it adequately captures the properties of the signal
under study. Hence, the selection of ¢;(d) should be jus-
tified by some evidence from samples of the signal. Even
though the state durations in a semi-Markov chain are in-
herently discrete, it is noted in many studies that continuous
parametric density functions are also suitable for modelling
state durations in many applications, including speech pro-
cessing [6, 7]. In this approach, state durations are modelled
with the best fitting parametric probability density function,
pdf, and then the discrete counterpart of this density func-
tion is taken as the best pmf. That is, if ¢;(x) is the contin-
uous pdf of the state duration of the i*" state, then the prob-
ability that the signal stays in state ¢ for exactly d time units

d

is given by ¢;(x)dx. Since negative state durations are
not physicallil rileaningful, it is usually more appropriate to
select ¢; () from the family of exponential distributions [6].
Specifically, the family of Gamma distributions are consid-
ered in [7] for speech processing applications. In this paper,
we assume that ¢; () is a Gamma distribution function with
shape parameter v; and scale parameter n;, that is

. _ 77;“ vi—1l_—mix
oi(x) —F(yi)x e

0<z<o0) (3)
where I' is the gamma function. The mean and variance
of ¢; are v;/n; and v;/n? respectively. Note that the sig-
nal model we present here is applicable with minor changes
to HSMM signals whose state duration densities are mod-
elled with a pdf other than Gamma. Furthermore, let ®,(x)
denote the cumulative distribution function of ¢;(x), i.e.,

d

We cor(l)struct our model for HSMMs using state dura-
tion dependant transition probabilities. We define the state
transition matrix Ag,, as Aq, = [a;;(d;)] where a;;(d;) =
P(si41 = ej|sy = e;,d(3)). Clearly, a;;(d;)’s are not con-
stant and change in time; however, we will denote a;; (dy)
with a;; for notational simplicity. For the diagonal elements
of Ag,, a;;’s, it is easily shown that

1 — ®;(dy(7))
1 —®;(de(i) — 1)

“4)

Qq5 =

The probability that the state process s; stays in the i*" state

during its visit to this state for exactly d time units is given
by (1 —ai;(d)) - Z;} a;; (k). By substituting a;; from (4),
it is easily shown that the probability density function of the
state space durations is actually equal to the selected model
6(d).

For i # j, a;; is the probability of leaving state ¢ and
entering state j, and is given by

aij = (1 —ay) - af )

where af; = P(s441 = ej|s; = e;,i # j) is defined as the
probability of transition from state ¢ to state j, knowing that
the signal leaves state 7. We write the matrix Ag, in terms
of a diagonal matrix P(d;) representing the recurrent state
transition probabilities, and a constant matrix A° represent-
ing the non-recurrent state transition probabilities.

Ag, = P(dy) + (I — P(d;))A° (6)

0 AF]
1 — @;(de(i)) . (7

Pij(dy) = P=
1= ®(de(i) = 1)~
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Note that a7;’s are constrained to Zjvzl aj; = 1. Since
P(d;) is a diagonal matrix, one can show that
Z;V:l a;;(d¢) = 1forall ¢.

Hence, the hidden state process s; evolves in time based
on the following equations:

Sit1 = Ag, - 8¢ + Vi ¥
Agq, = P(dy)+ (I — P(d;)) - A°
dit1 =841 0d+1

where wv;y; is a Martingale increment; that is,
E(v¢t1|81,82, -+ ,8:) =0.

The state process s; is hidden and is not observed. We
observe the observation process y;, where the probabilis-
tic distribution of y; is determined by the state at ¢, s;. In
this study, we assume that for each state 7, y; has a normal
distribution. That is, if s; = ¢; then

bi(yr) == P(ye|s: = e;) = N (s pi, 07) )

where y; and o7 are the mean and standard deviation of
the observation process y; for state i. y; may be written as
yr = (W, 8¢) + (Vo2, s¢)w, where = [p1, p2, -+, ],
o? = [of,03,--+ ,0%]. (.,.) denotes the inner product and
w; 18 Gaussian white noise with zero mean and variance 1.

2.1. Model Parameterizations

There are N2 + 3N parameters that define an HSMM sig-
nal in our model. These parameters are the N2 — N non-
recurrent transition probabilities a;’j, the mean and variance
of the observation process, p; and af forl < i < N, and
the parameters of the state-duration densities 7; and v; for
1 < i < N. We define 0 as a vector containing all the
model parameters; 8 = [1, ..., in,0%,. ..,
NN, v, .. uN]

2 o
OnN>Q12;
o
Saf_g Ns1L

3. OFFLINE IDENTIFICATION OF HSMMS

Given a set of observations from an HSMM signal, Vr =
{y1,y2,...,yr}, we like to estimate 6, the parameters of
the HSMM model. The algorithm we use is a variant of
the EM algorithm [2]. We first initialize 6 to an initial
guess. Analogous to the EM algorithm for identifications of
HMMs [3], in the E step of the algorithm we define a set of
probabilistic measures, which describe the evolution of the
hidden state variable s;. We define the ‘forward Varialgles’
at(i) a/S at(i) ::A P(St = €;,Y1,Y2,-.. ayt|0) . Let dt =
[di(i)] ', where dy(i) = E(d(i)|s¢ = i,0,y1,92, .., Yt)
is our estimate of the state-duration variable for state ¢ at
time t. (it is initialized to [1 1 1]/ fort = 1. We

construct dy 1 (i) iteratively as
(jtJrl(Z') =1+ E(St(i)‘ylvy% < Yt 0) : dt(z)
(i) 3.
o~ &),
Yty eld)

The state transition matrix Aq, is updated for each ¢ as
Ag, = P(d;) + (I — P(d:))A°.

The forward variable o (i) for ¢ = 1 is initialized to
the given initial state, i.e., a(i) = s1(i) for 1 < i < N.
The other forward variables are constructed iteratively as

ar1(f) = |20 (i) 'aij} bj(Ye+1)-

Similarly, the backward variables (3;() are defined as
Be(i) := P(ye41Yt42 - - - yr|8t = €i,0). B;’s are computed
by initializing 87 (i) = 1 for 1 < ¢ < N, and constructing
the other variables iteratively as 3;(i) = Zj»v:l Br+1(4) -
aij b (Y+1)-

In the M step of the algorithm, the model parameters are
updated to the maximum likelihood estimate of the model
parameters computed from the forward-backward variables
in the E step. There are different approaches to obtaining
the update equations, which all result in the same update
equations [3]. We use the concept of counting the event
occurrence to find the update equations. It can be easily
shown that the update equation for a7 ;’s, y;’s and o?’s are
identical to the formulae presented in [3] for 1dent1ﬁcat10n
of HMMs. We estimate the mean and variance of state-
duration pmf’s for state %, 11; s and O’ii as

=1+ 1<i<N

() by ()i () du(0)

Hsi =
’ T—1 N
t=1 (at(l) > jmt, i @0 (Y1) B (U )
T—1 N
Z au (Yer1) B (5) | (del@) = pps,i)?
9 t=1 Jj=1,5
Tsi = T— N
(i) Y aib;(Yer1) B (4)
t=1 J=1,j#i

Then, 7; and v; are computed as

vi =i /o7 M = is /07 (10)

The algorithm repeats the E and M steps, until 8 converges
to a constant vector. Our forward-backward algorithm has
the computational complexity of O(N2T') per pass and re-
quires a memory of 3NT because all the forward-backward
variables and estimate of the state duration variables need
to be stored.

It is noted that as ¢ increases (decreases), a;’s (3;’s) de-
crease very fast, and can quickly exceed the numerical range
of any computer. To avoid this, we suggest to use a scaling
scheme similar to the scheme used in [3, 8] for the HMM
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Fig. 1. Parameter estimates versus the iteration number. The dotted lines show the actual values of the parameters.

Parameter | Actual parameter values | Initial parameter values
0 020 080 0.00 0.50 0.50
A° 0.50 0  0.50 0.10  0.00 0.90
0.30 070 0 0.50 0.50 0.00
© [-10 0 10] —20 4 20]
o’ 8 8 8] 10 10 10]
s [10 20 30] 15 15 15
ol 4 4 4] 10 10 10|

Table 1. Actual and initial values of the model parameters
used in our experiment.

case, where a;’s are scaled to sum up to one for all ¢. It can
be shown that this scaling has no effect on the final parame-
ter estimates.

4. NUMERICAL RESULTS

In this section, we present the numerical results of imple-
menting our algorithm for identifications of HSMMs. In
our experiment, the parameters of an HSMM signal with
N = 3 distinct states were estimated using the algorithm
presented in section 3. The total number of observations
was T' = 10000. The actual and initial values of the model
parameters are given in table 1. Simulation showed that the
log-likelihood of the total observations Y given the param-
eters estimate 6, (i.e., log(P(Yr|0)), increased in each iter-
ation. This verifies that our algorithm finds the maximum-
likelihood estimate of the model parameters. The simula-
tion results show that all the model parameters converge to
their actual value after only a few iterations. Figure 1 il-
lustrates the case for three of the model parameters (a{s,
w3 and pg 1), where our estimates of these parameters are
plotted versus the iteration number.

5. CONCLUSION

We presented a novel signal generation model for hidden
semi-Markov signals. Our model captures the state-duration

densities in an HSMM using state duration dependent tran-
sition probabilities. We also presented a variant of the EM
algorithm for the identification of our model parameters.
Our identification algorithm finds the local maximum like-
lihood estimate of the model parameters. We also numer-
ically showed that our algorithm can successfully estimate
the actual values of the model parameters with significantly
less computational effort.
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