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ABSTRACT
The Kullback Information Criterion � 
 � [1] and the bias cor-
rected version, � 
 � � [2] are two methods for statistical model
selection of regression variables and autoregressive models. Both
criteria may be viewed as estimators of the Kullback symmetric
divergence between the true model and the fitted approximating
model. The bias of � 
 � and � 
 � � is studied in the underfitting
case, where none of the candidate models includes the true model.
Here, only normal linear regression models are considered, where
exact expression of the bias is obtained for � 
 � and � 
 � � . The
bias of � 
 � � is often smaller, in most case drastically smaller
than � 
 � . A simulation study in which the true model is of inf
inite order polynomial expansion shows that in small and moderate
sample size � 
 � � provides a better model selection than � 
 � .
Furthermore � 
 � � outperforms the two well-known criteria � 
 �
and � � � .

1. INTRODUCTION

The Kullback Information Criterion ( � 
 � ) is a recently devel-
oped tool for statistical model selection [1]. � 
 � serves as an
asymptotically unbiased estimator of a variant (within a constant)
of the Kullback symmetric divergence, known also as the � - di-
vergence between the generating model and the candidate fitted
model. Since the logic behind this criterion is sound, one may
hope that minimization of an exactly unbiased estimate of this di-
vergence rather than an asymptotically unbiased estimate, will pro-
vide a good model selection. This idea has been put in a general
framework by Linhart & Zucchini [3], who viewed model selec-
tion as the construction of an approximately unbiased estimator of
the underlying target criterion function.
Simulation studies show that � 
 � produces a good model selec-
tion in large samples [1]. Nevertheless, � 
 � becomes strongly
negatively biased for small samples of data or when the number of
fitted parameters (of the candidate model) to the number of data
gets large. Therefore, bias itself seems to be a property of � 
 � ,
that merits further investigation. In addition, one may hope that
by improving the bias property, one will also improve the qual-
ity of the selected models. This indeed was the motivation behind
the development of the corrected � 
 � � criterion proposed in [2] .� 
 � � is an exactly unbiased estimator of the Kullback symmetric
divergence and not only produces drastic bias reduction, but also
greatly improves the model selection in small samples.
For normal linear regression, or autoregressive models of � param-
eters (excluding the innovation variance � � ), the � 
 � and � 
 � ��
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are respectively defined as

� 
 � � � ! # % ' ) * , .� � 0 2 3 5 2 8 ) � 2 3 0 = (1)

� 
 � � � � ! # % ' ) * , .� � 0 2 3 5 2 * ) � 2 3 0 �� D � D *
D � I J � D �* L 2 � # N � * = (2)

where .� � is the estimate of the innovation variance for the fitted� -th model and � is the number of data. I ) P 0 is the digamma or
the psi function [4].
In the derivation of � 
 � � as well as for � 
 � , the unbiased-
ness property (asymptotically or at finite sample) is restricted to
the case where the true model is of finite dimension and is either
correctly specified or overfitted. We say that a true model is cor-
rectly specified or overfitted if some configuration of parameter
values in the candidate model, perhaps including some zero values,
yields the true model. Otherwise the model is said to be underfitted
and the candidate model is referred to as an approximating model
[5]. In practice, however, since a variety of candidate models will
be considered, it will often happens that the model is underfitted.
Moreover, if the true model is of infinite dimension, which is the
case of many typical example in practice, then none of the candi-
date models will be able to exactly reproduce the true model. Here,
the true model will always be underfitted and we only hope to find
a good approximating model.
In this paper, we study the bias properties and the model selec-
tion performance of � 
 � and � 
 � � in the underfitted case. We
only consider the case of normal linear regression, where exact ex-
pression of the expected value of � 
 � , � 
 � � and the Kullback
symmetric divergence are derived. The bias of � 
 � and � 
 � �
depends on the true regression function, on the form and dimen-
sion of the candidate model and on the amount of noise. Numerical
evaluation of the bias for the class of polynomial functions is pre-
sented. We find that although � 
 � � is not uniformly less biased
than � 
 � , for many cases the expected � 
 � � and the expected
Kullback symmetric divergence are minimized at the same model
order, while that of the expected � 
 � is usually minimized at
larger order. Furthermore as the ratio of the model order to the
number of data increases, � 
 � becomes strongly negatively bi-
ased, while the bias of � 
 � � is much smaller. Finally we assess
the quality of the models selected by � 
 � � and � 
 � in a poly-
nomial regression when the true model is of infinite order poly-
nomial expansion. For comparison purpose, we have included in
the study the well-known model selection criterion: Akaike Infor-
mation Criterion ( � 
 � ) [6] and the Minimum Description Length
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( � � � ) [7]. We find that � � 	 � significantly outperforms the
other methods in terms of the quality of selected models as mea-
sured by the mean square error of approximation. These results
strengthen the case for using � � 	 � instead of � � 	 as originally
recommended in [2].

2. THEORETICAL DERIVATION

Given a set of data � � � � � � � � � � � � � � � � � � generated from the
operating model � � " # % � (3)

where " is the true mean of � and % ( ) � + � , �- � � � , � � is the . 0 .
identity matrix. We consider the approximating model� � 3 4 6 4 # 8 � (4)

where 3 4 is a nonstochastic . 0 ; matrix, 6 4 is a ; 0 = parameter

vector and 8 ( ) � + � , �4 � � � . The parameter AB 4 � � A6 �4 � A, �4 � � is
estimated using the maximum likelihood principleA6 4 � E 3 �4 3 4 G I � 3 �4 � � � A, �4 � K K � � M 3 4 A6 4 K K � P . �
Let us define the vector of parameters 6 R4 such that6 R4 � S U W Y Z [\ ] K K " M 3 4 6 4 K K � � then3 �4 � " M 3 4 6 R4 � � + � and 6 R4 � E 3 �4 3 4 G I � 3 �4 "
This leads toK K " M 3 4 A6 4 K K � � K K " M 3 4 6 R4 # 3 4 E 6 R4 M A6 4 G K K �� K K " M 3 4 6 R4 K K � # K K 3 4 E 6 R4 M A6 4 G K K �� K K " M 3 4 E 3 �4 3 4 G I � 3 �4 " K K � # K K 3 4 E 6 R4 M A6 4 G K K �� " � � � � M h 4 � " # K K 3 4 E 6 R4 M A6 4 G K K � �
where h 4 � 3 4 k 3 �4 3 4 m I � 3 �4 . The nonnegative quantity n �" � � � � M h 4 � " P , �- , determines how much the true model is un-
derfitted by the ; -th candidate model. The larger the value of n ,
the larger the undefit is.
Let o �p � n � denote the noncentral chi-square random variable withr degrees of freedom and noncentrality parameter n , we have the
following proposition.

Proposition: The random variables K K " M 3 4 A6 K K � and A, 4 are in-
dependent. FurtherE K K " M 3 4 A6 4 K K � P , �- M n G ( o �4 and k . A, �4 P , �- m ( o �� I 4 � n � �
The proof follows from the arguments of Rao [8] (pp. 186,187,209).
From Rao [8] (pp. 182), if a random variable 3 ( o �p � n � , then 3
has a probability density functionu � v � � w I xy z |}~ � - =� � � =� n �

~ �
� ~ � p � v � �

where

�
� ~ � p � v � is the probability density function of a centralo �� ~ � p random variable.

Let r - � � � be the sampling distribution of the true unknown model
and by r � � K AB 4 � the sampling distribution of the ; th fitted candi-
date model, which we denote for simplicity by r 4 � � � . Recall that
the Kullback symmetric divergence between the two models is def
ined as [9]� � � r - � r 4 � � � � r - � � � � � W � r - � � �r 4 � � � � # r 4 � � � � � W � r 4 � � �r - � � � � � � �
Let’s define the quantity

� � � � � � � � M � � r � � � � � � W r � � � � � �
Neglecting the term � � � + � + � , since it does not depend on ; , the
quantity � � � r - � r 4 � � � � � + � ; � # � � � ; � + � M � � � ; � ; � �
would provide a suitable measure of the Kullback symmetric di-
vergence without affecting its discrimination ability. Under the
modelling framework of (3) and (4), the above quantity will be
equal to� � � r - � r 4 � � . � � W � , �- � # . � � W � � � � # K K " M 3 4 A6 4 K K � P , �-# K K " M 3 4 A6 4 K K � P A, �4 # . , �-A, �4 # . A, �4, �- M . � (5)

Now, let us find the expected value of � � � r - � r 4 � denoted by� � � ; � � � - � � � � r - � r 4 � � �
where the expectation is with respect to the true unknown modelr - � � � .
Since the inverse of o �� ~ � p has an expected value of � � � # r M � � I � ,
it follows that� - � , �-. A, �4 � � w I xy z |} ~ � - =� � � =� n �

~ =� � # . M ; M � �
and� - ¡ K K " M 3 4 A6 4 K K � P A, �4 ¢ � . � - ¤ K K " M 3 4 A6 4 K K �, �- ¥ � - � , �-. A, �4 �� . � n # ; � w I xy z |} ~ � - =� � � =� n �

~ =� � # . M ; M �
after simplification we, get� � � ; � � . � � W � , �- � # � n # . � � W � � � �# . w I xy z |}~ � - =� � � =� n �

~ . # ; # n� � # . M ; M � � (6)

Now to compute the expected value of � � 	 and � � 	 � , all that
we need is to compute the quantity� - � � � W � . A, �4, �- � � �
Since the logarithm of a o �� ~ � p has expected value of ¦ E � # r � G #� � W � , it follows that� - � � � W � . A, �4, �- � � � w I xy z |} ~ � - =� � � =� n �

~
¦ � � # . M ;� � # � � W �
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Thus, using the above result with the definition of � � � and � � � �
as in (1) and (2), one can get� � 	 � � � �  � � � � � � �� � � � �  "# % '( ) + � ,- / 0 ,1 2 3

)
4 0 - � � 6 81 3� � : � � � 0 < =� 3 � , @ � A � 8 � , � (7)

and� � 	 � � � � �  � � � � � � �� � � 1 � 8 � , � �� 6 8 6 1 6 � 4 0 � 6 81 3� � �  "# % '( ) + � ,- / 0 ,1 2 3
)

4 0 - � � 6 81 3� � � , � � � � � 1 = � � (8)

Equations (6), (7) and (8) will be used later in the simulation to
compute the expected value of the Kullback symmetric divergence� � � and � � � � respectively.

3. SIMULATION

Let us consider the operating modelO P 
Q

� R P � � U P V W  , V 1 V Y Y Y V � V (9)

where

Q
� R �  R ] ^ ` � < = R � , R P are an equally spaced grid over the

interval a b V , c and U P are i.i.d Gaussian random variable with zero
mean and variance � �� . We also consider the approximating models

O P  d(e + f g e R e  fP � i P V (10)

where g f V g � V Y Y Y V g d are real valued parameters and i P are inde-
pendent and identically distributed normal random variables with
zero mean and variance � �d . We denote the 8 -th candidate approx-
imating model by

Q
d � R �  g d R d  f � Y Y Y � g � R � g f Y

The motivation for studying this example is that polynomials cre-
ate a difficult model selection problem that has a strong tendency
to produce catastrophic overfitting effects. An other benefit is that
polynomials are an interesting class of linear models, for which
there are efficient techniques for computing the best fit.
Figure 1 gives plots of

k l � 8 � , together with the expectation of� � � and � � � � as a function of 8 , where 8  , V 1 V Y Y Y V 1 n ,
for sample size of �  A b , under three different values of � �� .
Although � � � � is not uniformly less biased than � � � , the ex-
pected value of � � � � outperforms that of � � � in capturing the
over all shape of

k l � 8 � . In particular, � � 	 � � � � is often min-
imized at a large value of 8 , and clearly suboptimal, whereas the
minimizer of � � 	 � � � � � and

k l � 8 � are similar. This may hap-
pen when a large order cutoff is imposed on the class of candidate
models as a consequence of a lack of prior information about the
nature of the true model. Furthermore as the ratio of the model or-
der to the number of data increases, � � � becomes strongly nega-
tively biased, while the bias of � � � � is much smaller. Finally we
note that both � � � and � � � � are biased for low dimensional ap-
proximating models and that their biases increase when the noise
variance decreases.
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Fig. 1. x � z { | } ~ ( t t t ), x � z { | } � ~ (—) and � l (--) as function of �
for Polynomial regression candidates.
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� �� � � � 
 � � � � 
 � � � � � � � 

0.005 41.18 119.23 102.02 163.84

0.05 38.60 115.08 94.44 172.05

0.5 25.52 88.08 64.91 164.51

Table 1. Averages of Kullback symmetric divergence, � � � �
n � � � 
 � � � � 
 � � � � � � � 

40 33.10 48.55 39.07 77.40

50 30.97 37.21 32.30 55.25

60 29.58 32.71 29.99 44.76

100 28.23 29.04 28.34 35.36

200 27.63 27.86 28.96 31.32

Table 2. Averages of Kullback symmetric divergence, � �� � � � �  .

Next we explore the quality of models selected by ! # % and ! # % '
for polynomial model selection. Since there is no true finite poly-
nomial model order in the current study, we will measure the qual-
ity using the average Kullback symmetric divergence, instead of
simply examining the selected model orders. For comparison pur-
pose we have considered two other well-known criteria, the Akaike
Information Criterion ( ( # % ) [6] and the Minimum Description
Length ( ) � , ) [7]( # % . 0 1 2 4 6 8 9 :� �; < = 0 ? ) � , . 0 1 2 4 6 8 9 :� �; < 0 6 8 9 4 F
For each data realization obtained using the model in (9), the cri-

terion ( leads to selected model order :0 � , and the discrepancy! H . J � ? J K; M 1 as defined in (5). In order to allow these discrepancy
value to be viewed as relative to an absolute zero, the constantN H . O ? O 1 was subtracted, yielding to � � 2 ! � R N H . O ? O 1 . The
average values of � � � 
 , � � � 
 � , � � � � , � � � 
 are obtained us-
ing Monte Carlo simulation over 10000 data realizations with data
size 4 2 U O . The results are shown in Table 1. For all noise lev-
els considered the average value of � � � 
 � is less than those of� � � 
 , � � � 
 , � � � � , suggesting that ! # % ' provides the best
model selections on the average. We have repeated the same set of
simulations with different sample size 4 and kept the noise vari-
ance constant at � �� 2 O F O Y . The same results can be noticed as
shown in Table 2. Clearly the performance of ! # % ' is outstand-
ing for small sample cases and as the number of data increases all
the different competing criteria became equivalent.
Another criterion for assessing the quality of the fitted polynomial
model using a model selection criterion is the mean square error
of approximation, defined as

) � 2 Z [� \
]

. _ 1 R
]

K; M . _ 1 a � N _ (11)

Table 3 and Table 4 give averages of ) � � 
 , ) � � 
 , ) � � �
and ) � � 
 � using the same Monte Carlo simulation reported ear-
lier. The results are reasonably similar to those found in Table 1
and Table 2 for the Kullback symmetric divergence, with ! # % '
uniformly performing best, especially at small and moderate data
sample.

� �� ) � � 
 � ) � � 
 ) � � � ) � � 

0.005 .0019 .0522 .0337 .1315

0.05 .0199 .6212 .3676 1.7792

0.5 .1776 3.2904 1.5881 1.6227

Table 3. Averages of Mean Square Approximation error, � � � �
n ) � � 
 � ) � � 
 ) � � � ) � � 

40 .0135 .0185 .0398 .0127

50 .0104 .0113 .0105 .0162

60 .0087 .0090 .0087 .0114

100 .0054 .0055 .0056 .0064

200 .0029 .0029 .0031 .0032

Table 4. Averages of Mean Square Approximation error, � �� � � � �  
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