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ABSTRACT

Singular random signals are collections of singular random vari-
ables indexed over time. Singular random variables have continu-
ous distribution with derivatives equal to zero almost everywhere.
Such random variables do not seem interesting in Signal Process-
ing. On the contrary, this paper shows that simple signals can be
singular. This is especially the case of ARMA signals generated
from discrete white noise with poles located inside a so-called sin-
gularity circle. The origin of singularity and its relations to a frac-
tal structure are presented along with various simulations illustrat-
ing the theoretical results.

1. INTRODUCTION

Singular random variables (RV) are characterized by continuous
distribution functions (DF) with derivatives equal to zero almost
everywhere. Therefore, neither the probability density function
(PDF) nor the probability mass exist at some points. Singular RVs
are well known in probability theory and discussed in more math-
ematically oriented books (see [1, p. 180] or [2, p. 9]). Examples
of singular RVs are also given in [3] which contains a long list of
references.

Singular RVs are considered as mathematical curiosities in the
Signal Processing community. Thus, they are either ignored [4],
[5] or presented without any practical interest [6]. This idea is
noted in [3, p. 4]: “In applications one almost inevitably encoun-
ters either discrete or absolutely continuous distributions. Singular
distributions are interesting from a theoretical viewpoint but hardly
ever occur in practical work.”

However, [3] has shown that if wy, is a symmetric Bernoulli
strictly white noise (SBWN) (a sequence of independent and iden-
tically distributed (IID) binary RVs with values 1 with probabil-
ity 1), then the RV 2 = 3°2° a"wy is singular for a < 1/2.
This is the simplest example of a singular RV which also appears
often in Signal Theory. Indeed, this RV is the value at each time
of an autoregressive signal of order one [AR(1)] generated from
the simplest of white noises. Thus, singular RVs are actually quite
common in Signal Processing. This has already been noted in [7].

This paper shows that the singularity of ARMA signals results
from a combination of two points: discrete-valued inputs (very
common in communication problems) and location of the poles
inside the so-called singular circle. This circle is centered at the
origin with a radius equal to 1/g, where g is the number of discrete
values of the input signal. The singular circle is the cornerstone
of the singularity discussion, as is the unit circle for stability. The
theory of the problem is introduced in Section 2. Various computer
simulations are presented in Sections 3 and 4. This approach will
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highlight a phenomenon considered a mathematical curiosity and
thus far widely ignored.

2. THEORETICAL APPROACHES

2.1. Singularity

According to Lebesgue’s decomposition theorem, any DF F' can
be decomposed uniquely as [3]:

F(z) = ai1Fy(z) + asFoc(x) + asFs(z), (D

where the coefficients a; satisfy Z?:l a; = 1,a; > 0, and
Fy, Fyc, Fs are three distribution functions such that:

e [ is a step function, i.e. the DF of a discrete RV,

o [, is an absolutely continuous (AC) function, i.e. the DF of a
continuous RV with a probability density function,

e F is a singular DF, i.e. a continuous function whose derivative
is almost everywhere equal to zero. Consequently, there is neither
PDF nor probability mass at some point.

A distribution F' is said to be pure if one coefficient in (1) is
equal to 1 (and the two others equal 0).

Consider a discrete white noise wy, which is a sequence of IID
RVs taking g distinct possible values. The simplest example is the
SBWN where ¢ = 2. Denote z, as the output of a causal filter
with impulse response (IR) hy, driven by wy:

T = Zhl’wk_l. (2)

1>0

This convolution is a finite sum if the IR of the filter is finite (FIR)
or a series if it is infinite (IIR). In the latter case, it is assumed that
the IR hy, is absolutely convergent such that

S=> || < oo. 3)
k=0

The discrete type of the input white noise implies the so-called law
of pure types (see [3, p. 64]). The law of pure types states that the
RV z = ZZ":O hrwy, (the output at each time of the filter defined
by (2)) is either purely AC, or purely discrete, or purely singular.
If there are only n terms in the sum defining x (FIR), z is purely
discrete and has ¢" values at the maximum. It is assumed in what
follows that the filter is IIR. This implies there is no IV such that
for k > N, hy = 0. With this assumption, it can be shown that x
cannot be purely discrete (for instance by using theorem 3.7.6 of
[3, p. 63]). As a consequence, x is purely AC or purely singular.
Consider the case of the exponential filter with h;, = aku;C
(where up, = 1fork > Oand ur = 0 for k < 0). If wy is a
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SBWN, the following holds [3][8]: i) z is purely singular if 0 <
a < 1/2, x is uniformly distributed in the interval [—2, +2] if
a = 1/2 and iii) z is purely AC for almost all values of a satisfying
1/2 < a < 1. Note that « is a singular RV for some a €]1/2, 1|
(such as the reciprocals of the so-called Pisot numbers [8]).

Our aim is to extend this kind of result to more general filters
and discrete white noises. Specifically, extensions to dynamical fil-
ters defined by their poles and zeros (ARMA signals) are studied.
For this purpose, recall some notation introduced in [3]. The spec-
trum Sr, of the DF F, (&) of the RV x is the set of all the points of
variation (increase) of S, . Denote L(SF, ) as the Lebesgue mea-
sure of this set. The RV x cannot be purely AC if L(Sg,) = 0.
Thus, « is either purely discrete or purely singular. However, x
cannot be purely discrete as indicated previously. Consequently,
the singularity is characterized by the relation L(Sr,) = 0. In
order to study L(SF, ), consider the quantity

pr= |hul )
k=n

(the rest of the series giving S in (3)). The most common charac-
terization of the singularity is:

Theorem 1 /3, p. 66]. If wy isa SBWN and if hy, > 0, hy, > pr41
foralln > 0, then
L(Sp,) =4 lim 2"h,. 5)

n—ro0
Consider some consequences of this theorem:

e Since h, = pn — pn+1, the condition h,, > pp+1 can also
be written as pn, > 2pn41, n > 0.

e Since po = S and p1 = S — ho, the condition on p,
implies that S > 2(S — hg) or S < 2ho. For the IR
hy = a*uk, ho = 1 and S = 1/(1 — a). Thus, the
condition S < 2hg yields a < 1/2. It is easy to verify
that this implies p, > 2pn4+1,Vn > 0. Therefore (5) can
be used and, yields L(Sr,) = 0 since a < 1/2. Conse-
quently, the RV « is singular. This is the result indicated
above. Furthermore, note that (5) is still valid fora = 1/2
since L(SF,) = 4 and the RV z is uniformly distributed in
[—2, +2] as indicated above.

However, the conditions allowing (5) are too restrictive. In-
stead of computing the exact value of L(SF, ), it is more interest-
ing to obtain an upper bound of this measure. Furthermore, it is
convenient to have a result valid for any discrete-valued signal wy.
This is the purpose of the following proposition.

Theorem 2. Let q be the number of distinct possible values of
the discrete IID random variables wy. If the filter with impulse
response g = q*hy, is stable, then the random variable x =
> neo hrwy is singular.

Proof. Let A be the greatest possible value of |wy|. The partial
sum ZZ;; hrwy, has g™ distinct values v;* at the maximum. The
possible values of the RV z are of the form v + > 7o henk,
where 7, is one of the possible values of wy,. These values belong
to an interval I} of measure smaller than 2Ap,. Since there are
at the maximum ¢" intervals I;*, the possible values of x belong
to an interval I, of measure smaller than 2A¢" p,. Outside this
interval, the DF F'(£) of « cannot vary. Thus, the measure of the
set of points of increase of F'(£) is smaller than 2Aq" p,, for any
n > 0. Consequently, the measure L(Sr,) of the spectrum Sz,
satisfies L(Sr,) < 2Aq"pn, for any n > 0. However, since

qa>1,¢"pn < pn = Y52, ¢"hi. Because of the stability
assumption, lim, o pp = 0. Hence lim,— 00 ¢"pn = 0 and
L(Sr,) = 0. This shows that y, is a singular RV.

Let us present some consequences of this theorem.

e Consider the case of the IR hy, = a®uy, giving p, = a™/(1—
a). As aresult L(Sr,) = 0 as soon as a < 1/q. The pre-
vious result for SBWN is again obtained for ¢ = 2 and
A = 1. Furthermore, the limit is reached for ¢ = 1/2. This
is because p, = 2(27") and L(SF,) = 4.

o In our simulations we shall consider the filter with the IR
he = (k + 1)a*uy. Simple algebra yields p, = a"(a +
nf) where a and §3 are constants. Therefore L(Sr,) = 0
as soon as a < 1/q (the same condition as previously).
However, Theorem 1 gives a more restrictive result since
S < 2hg yields a < 1 — 2712 2 0.2929.

o Circle of singularity. Consider an ARMA signal z;, gen-
erated by a g-valued white noise wy and a dynamical fil-
ter. The stability condition is ensured if all the poles of
its transfer function (TF) H(z) are located inside the unit
circle, called circle of stability. The same discussion can
be presented for the filter with IR g = ¢"hy. Its trans-
fer function is G(z) = H(z/q). One can associate the pole
gm; of G(z) to any pole m; of H(z). The stability condition
of Theorem 2 is ensured if ¢|m;| < 1, i.e. if all the poles of
H (z) are inside the circle of center 0 and radius 1/¢. This
circle is called circle of singularity by analogy to the circle
of stability.

The location of poles inside the unit circle is a necessary and
sufficient condition for stability. However, the singularity circle
provides only a sufficient condition ensuring singularity. For ex-
ample, it is possible to obtain singularity for any value of a €
11/2, 1], for the filter ki, = a*uy, driven by a non-symmetric BWN
by using appropriate probability masses for the RVs wy. There
also exist values of a €]1/2, 1] yielding singularity for a SBWN.
However, the set of such points is of zero measure [8] and can be
ignored in a discussion concerning Signal Theory. Note also that
Theorem 2 is independent of the values of the IID RVs wy, and of
their probabilities. Theorem 2 depends only upon the number q of
discrete values of the input.

2.2. Fractal properties

Consider the random partial sum zp,] = ZZ;; hrwg, where wy
is a symmetric SBWN. z,,) takes on 2" values v;’ = ZZ;; hrex
where €, = %1 and [, is symmetric. Finally, as in Theorem 1,
assume that hy, > 0. Indeed, as €, = +1, the possible values v}
are the same if we replace hy, by |hx|.

It is possible to associate two values v+ as defined by v +
hy, to each value v}'. Repeating this procedure, a tree can be con-
structed whose nodes are the positive values v;" of the RV z[,].
These are represented in Figure 1 where only the nodes generated
by ho are shown. Of course, there is a symmetric tree starting from
—ho.

The condition of Theorem 1, hy, > prn 41, implies that there is
no crossing of the branches of the tree. Consider first the branches
starting from $ho. There is no crossing if the nodes generated by
ho are all positive. By symmetry, this implies that the nodes gen-
erated by —ho are all negative. This is realized if hg — p1 > 0,
which is the condition of Theorem 1 for n = 0. The same proce-
dure can be applied starting from any node v;* of the tree. There is
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no crossing of branches of the tree coming from an arbitrary node
v if v —hn+pnt1 < V" +hn —pr1. This yields the condition
Ry > pn+1. When by = afug, 0 < a < 1/2, this non-crossing
property yields an infinite repetition of the same structure because
of the properties of the exponential.

The non-crossing property implies the presence of holes in the
histogram of zy, i.e. domains where the DF is constant. Indeed,
the interval [v — hn + prnt1, v + hn — pr41] with positive
measure 2(h, — pn+1) contains no point of variation of F(§)
and produces a hole in the histogram of x; when the conditions of
Theorem 1 are satisfied.

The non-crossing property can be valid only for sufficiently
large n, or if n > N. The properties of symmetries and holes are
also valid with this condition and are thus asymptotic.

ho n=0
1-h 14+ n=1
2hq
1—h1—he 1+ h1 + ho
2hs
2hs

Fig. 1. Tree of successive possible values v;".

3. SIMULATIONS WITH AR(1) SIGNALS

An AR(1) signal is defined by the recursion xr = axr_1 + wg,
k > 0. Thus, an AR(1) signal is characterized by the regression
coefficient a, the DF F,, (&) of the IID RVs wy, and by the initial
value zo. The influence of z¢ is important only for the small values
of k and can be neglected for £ > 10. Note that the recursion
generating & corresponds to a filter (2) with hy = a*uy. The
driving noise wy, is a SBWN in all simulations of this paper.

The appropriate tool for analyzing the DF of the signal z is the
histogram. Starting from N samples xx, k = 1, ..., N the purpose
of the histogram is to record the number n(«, 8) of such samples
satisfying the condition a < z < (. The difference § — « is
the length of the analysis cell. For large values of N the ratio
n(a, 8)/N gives an estimate of the increment F'(8) — F(«a) of
the DF F'(§). This result (known for IID RVs) remains valid when
the samples are correlated with the correlation function of AR sig-
nals. The normalized histogram yields an evaluation of the PDF
for small values of the difference 8 — o when the DF has a deriva-
tive. However, since the DF can be without a PDF, histograms
at different scales have to be realized by using the procedure de-
scribed below.
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The histograms of AR(1) signals obtained from 2.5 x 10°
samples x;, are depicted in Figure 2 for different values of a (1:
a =022 a=1/3;3 a=04; 4 a = 0.5). The values
of x; are classified in 400 equal width adjacent cells covering an
interval [— B, +B] where B = 1.15 (S is the sum defined by (3)).
Histogram 2.1 shows only a small number of apparent symmetries.
The symmetries appear more clearly in the other histograms. Fi-
nally the last histogram for a = 1/2 corresponds to the theory that
predicts a uniform distribution in the interval [—2, +2]. Note that
S is the maximum value of v;*. Thus F'(§) = 1 when £ > S. The
values of S appearing in Fig. 2 are 1.25, 1.5, 1.667, and 2 since
for AR signals S =1/(1 — a).

T
10 10*-
510° | | h

0 Il Il Il

410 T T T T T T T

o 2

410°-

Fig. 2. Histograms of z, for various a.

Histogram 2 of Fig. 2 (corresponding to a = 1/3) is analyzed
at different scales in order to better understand the singularity. The
center of the histogram is chosen at one of the symmetry centers,
ie. atc, = Y. hi (anode of the tree in Fig. 1) in order
to highlight the symmetries of the DF. The intervals of analysis
of each histogram are defined as [c, — 1.1pn,cn + 1.1py] (pn is
defined by (4)) to highlight the fractal autosimilarity. The results
are presented in Figure 3.

3 T T T T T T T T T T T
s 4
0 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 !
15000 - T — - T T T —T T
10000 q
0 2
115 1.2 1.25 1.3 1.35 14 1.45 15
T T T T T T
5000 | I || I || R || || II || I | q
0 3
1.4 1.42 1.44 1.46 1.48 15
T T T T T T T T
2000
4
1.465 1.47 1.475 1.48 1.485 1.49 1.495 1.5
T T T T T T T
1000 [
5
1.488 1.49 1.492 1.494 1.496 1.498 1.5
T T T T T T T T T
500

1.496 1.4965 1.497 1.4975 1.498 1.4985 1.499 1.4995 15
Fig. 3. Histograms of z, at differents scales fora = 1/3.

The symmetry centers (calculated for a = 1/3) are 1, 1.333,
1.444, 1.4815, 1.4938, 1.4979. The six histograms of Figure 3



correspond to the analysis of 2.6 x 10° successive samples of the
signal z1. The phenomenon of autosimilarity is especially remark-
able. Note that histogram 6 of Figure 3 corresponds to the interval
[1.4958, 1.5] of the second histogram of Figure 2 to appreciate the
precision of the result. Thus, the structure of the histograms re-
mains almost the same, in spite of a scaling effect of the order of
700. This corresponds to the generation of the nodes v;* illustrated
by the tree of Figure 1. It also explains the origin of the singular-
ity of the signal. Indeed, this figure can be realized for any node
vi* of the tree. Continuing with the collection of histograms for
n — oo, any interval A¢ does not contain points of variation of
the DF F'(£), which means that the derivative is almost everywhere
equal to zero, i.e. that x,, is singular.

4. AR SIGNALS WITH MULTIPLE POLES

The previously analyzed AR(1) signals are generated from the
SBWN wy, by the filter (2) with the transfer function H;(z) =
z/(z — a). To better understand the singularity phenomenon, con-
sider AR signals x;, generated by filters with transfer functions
H,(z) = [H1(#)]?, introducing a pole of order p in a, driven by
the same input white noise wy.

The histograms of the signals z;, are represented in Figure 4
forp =1,2,3 and a = 0.4. For this value of a, the conditions of
Theorem 1 are satisfied for p = 1 (simple pole) but not for p = 2
(double pole) and p = 3 (triple pole). The sum S defined by (3)
can be expressed as S = 1/(1 — a)P. Its values for p = 1, 2,
3 are 1.6667, 2.7778, 4.6296, which appear clearly in the figure.
Note that the central hole in the histogram (analyzed previously in
the framework of fractal structures) appears only for p = 1. This
arises because the conditions of Theorem 1 are not satisfied for
p = 2 and p = 3. Furthermore, the signals x; seem to have a
PDF for double or triple poles. However, this is only an impres-
sion. Figure 5 shows histograms of the signal x;, corresponding
to a double pole as in Figure 4.2 at different scales. The fractal
structure with central hole in the histogram begins to appear with
histogram 4. This shows that the singularity cannot be observed
only from a global histogram and requires a more detailed analy-
sis. The same phenomenon appears in the case of the triple pole
but is not discussed here.

1o M & o ®

1o v & o ®

Fig. 4. Histograms of z;, forn =1,2,3,a = 0.4.

Fig. 5. Histograms for double pole at different scales.

5. CONCLUSION

This paper introduced a new class of signals called singular ran-
dom signals. These signals are characterized by purely singular in-
stantaneous DFs. Singular random signals are usually considered
as having only a mathematical interest without impact on Signal
Theory. To the contrary, this paper has shown that very simple ran-
dom signals can exhibit singularity. For example, ARMA signals
driven by discrete inputs are singular when the poles are located
inside the singularity circle. The singularity circle has the same
center as the stability circle but with radius 1/¢ (g is the number
of discrete values of the input). This radius is 1/2 for Bernoulli
white noise with two possible values. The fractal properties of the
DF were discussed and illustrated by histograms at different scales
obtained with AR(1) and multiple pole AR signals.

This work can be extended in various ways to better under-
stand the properties of singular signals. Similar results were ob-
tained with simulations of more general ARMA signals (including
signals with complex poles). The condition for the pole locations
is only sufficient. Thus, it is of great interest to extend the domain
of singularity. Finally, it is of great interest to analyze the effects of
the singularity on various Statistical Signal Processing procedures,
especially those where the probability density function is used.
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