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ABSTRACT

The wavelet packets-based MUSIC (WP-MUSIC) is pro-
posed in this paper to improve the performance of classical
MUSIC in scenarios of closely spaced DOA and low signal-
to-noise ratio (SNR). The WP-MUSIC is to decompose the
fullband signal into several subbands by wavelet packets,
and then apply MUSIC to each subband. The computa-
tion savings of WP-MUSIC are proven superior to MUSIC.
Some simulation results, proving the validity and improved
performance of the proposed approach, are presented.

1. INTRODUCTION

The high-resolution methods of direction-of-arrival (DOA)
estimation have been a topic of great importance in recent
years for their wide-spread applications in radar, sonar, and
mobile communication. Especially the multiple signal clas-
sification (MUSIC) method [1] captures many attentions for
its super resolution capability and independence of array ge-
ometrical structure. However in the scenarios of low signal-
to-noise ratio (SNR), small number of snapshots, or closely
spaced signal directions, the performance of many meth-
ods degrades rapidly. Also, the computation loads of most
eigenstructure-based methods increase exponentially with
the growth of array size. Although some preprocessing meth-
ods like Toeplitz approximation method (TAM) [2] and spa-
tial smoothing method (SSM) [3] are suggested to improve
the estimation when the sources are correlated and coherent,
the inherent disadvantages of fullband analysis of received
signal can not be alleviated.

Subband decomposition is a technique to split the spec-
trum of original signal with bandpass filters and subsampled
to have a time-frequency decomposition. Rao and Pealman
proved in [4] that with subband decomposition, some su-
periorities can be obtained comparing with the direct esti-
mation on the fullband signal. Classical wavelet transform
(WT) [5] is a two-subband decomposition method, which
presents the resolution both in frequency domain and time
domain. Different mother wavelets are designed to deal
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with different scenarios. Wavelet packet (WP) is a much de-
tailed WT by decomposing the approximations and details
as well. Both WT and WP have their successful applications
in harmonic retrieval [6], [7]. B Wang et al. [8] suggested
a spatial discrete wavelet transform preprocessing method
(SDWTP) for direction-of-arrival estimation by analyzing
the spatial-temporal duality , but SDWTP method failed to
decompose the spatial spectrum of the details.

Inspired by the work of [6] and [8], a novel WP-based
method for DOA estimation (WP-MUSIC) is proposed in
this paper by combining subband decomposition with MU-
SIC. Wavelet packet is chosen to decompose the subbands
for its capability of details-decomposition, which provides
a solution to the problem in [8]. The proposed method is
performed by wavelet packets decomposition of the signal,
using a minimum description length (MDL) criterion [9] as
the guidance of each decomposition . A best bases method
(BBM) [10] is employed to choose the best bases of the WP
tree . MUSIC method is applied to all the best bases, yield-
ing all the DOAs. The proposed method provides both sav-
ings of computation and improvement of resolution, which
is a good candidate of foremost preprocessing method for
many DOA estimation algorithms and even for TAM and
SSM to refine the performance, especially in scenarios of
low SNR and closely spaced spatial frequency.

2. PROBLEM FORMULATION

2.1. Spatial-Temporal Equivalence

Consider a uniform linear array (ULA) with M isotropic
sensors spaced by the distance d and D (D < M ) narrow-
band incoherent plane waves centered at frequency ω0 , im-
pinging from directions {θ1, θ2, ..., θD}. Using complex
representation, the received signal at the ith sensor can be
expressed as

xi(t) =
D∑

k=1

sk(t)e−jω0(i−1) sin θkd/c + ni(t) (1)

where sk(t) is the complex envelop signal of the kth wave-
front, c is the propagation speed of the wavefronts, and ni(t)
is the additive noise at the ith sensor.
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In matrix form, we have

x(t) = As(t) + n(t) (2)

where x(t), s(t), and n(t) are respectively the M ×1 vector
of received signal, D×1 vector of D wavefronts, and M×1
vector of additive noise. A is the matrix of array manifold

A(t) = [a(θ1),a(θ2), ...,a(θD)] (3)

where a(θk) = [1, e−jω̂k , ..., e−j(M−1)ω̂k ]T is the steer-
ing vector of the array corresponding to the direction θk,
where ω̂k = ω0 sin θkd/c denotes the spatial frequency of
kth wavefront, superscript T denotes transpose.

It is assumed that the signals and noises are stationary
and ergodic zero mean complex valued random processes,
the noises are assumed to be uncorrelated between sensors,
uncorrelated with the signals, and have identical variance
σ2 in each sensor. With the assumptions above the M × M
spatial covariance matrix of the received signals is denoted
by

Rxx = E[xxH ] = ARssAH + σ2I (4)

where Rss = E[ssH ] is the D × D signal covariance ma-
trix, superscript H denotes Hermitian transpose (complex
conjugate transpose), and I denotes the M × M identity
matrix.

The temporal frequency ω is defined by the ratio of an-
gular change and its time duration, which can be extended
to a generalized parameter frequency if given the ratio of a
unit parameter and its unit time duration. As we have de-
fined in this paper, ω̂ is the spatial frequency, which follows
the definition of its counterpart.

The response difference between two sensors to the kth
wavefront is the phase difference caused by the spatial trans-
mission delay, termed as ω̂ · 1t, in which 1t denotes the unit
spaced distance and it plays the role of unit sampling du-
ration of time. Suppose an azimuth-only scenario and the
array sensors is placed positively along the x-axis with the
first sensor locating at the coordinate origin. Thus x-axis
can be seen as the spatial distance. With these assumptions,
the nth noiseless snapshot of the array to the kth wavefront
can be expressed as

x(n) = [sk(n), sk(n)e−jω̂k , ..., sk(n)e−j(M−1)ω̂k ]T (5)

It can easily prove that x(n) is the sampling sequence
of a signal with the amplitude sk(n) and frequency ω̂k. In
the scenario of N snapshots, the equivalence between tem-
poral and spatial signal model is that the realizations and
samplings in temporal scenario correspond respectively to
the snapshots and sensors in spatial one.

2.2. Subband Decomposition Superiorities

Subband decomposition is proven in [4] to have its supe-
riorities upon fullband signal, which are concluded in the
following aspects.

1. The aggregate of the minimum prediction error of the
subbands is less than that of the fullband signal.

2. For Gaussian source, the composite entropies of the
subbands are closer to the the entropy rate of the source
than that of the fullband.

3. The spectral flatness measure (SFM) of the Gaussian
source is less than that of the subbands, which means
the SFM of the subbands is much flatter.

Besides that, subband decomposition for spatial frequency
estimation in this paper has two advantages: not only are
the various modes isolated in separate subbands, but the
SNR and spatial frequency spacing are doubled in each two-
subbands’ splitting. It is well known that the Cramer-Rao
bound (CRB) of the estimation goes better if there is less
number of modes in each subband.

2.3. Proposed WP-MUSIC Method

For computation’s sake, a pseudo-2D method is suggested
in this paper. Pseudo-2D means to decompose each snap-
shot of the ungrouped signal matrix by wavelet packets while
keeping the number of snapshots unchanged. After all the
snapshots are decomposed all the approximations and de-
tails are regrouped into two matrices for next-level decom-
position. Pseudo-2D method is performed with the super-
vision of minimum description length (MDL) criterion and
the decomposed wavelet packets tree is also pruned by the
best base method (BBM). The following is a summary of
WP-MUSIC method based on the signal model (2).

Step 1. Take snapshots of signal model (2) and form an
M × N matrix X = [x(1),x(2), ...,x(N)], where
x(i), i = 1, 2, ...N is defined in (2) .

Step 2. Perform pseudo-2D method on X and yield the
approximation X1 and detail X2.

Step 3. Apply MDL criterion on the mother node X and
its children nodes X1 and X2 respectively, if there are
to modes lost, accept two nodes and goto Step 2. for
next decomposition. Otherwise stop the decomposi-
tion at node X.

Step 4. Prune the decomposed tree by BBM.

Step 5. Apply MUSIC method to all the leaves to obtain
the estimates of the corresponding subbands.

It is also worth noting that the WP-based DOA estima-
tion method is not confined to the classical algorithm. The
proposed method focuses on the algorithm itself. The goal
is to increase the estimation of resolution in low SNR and
small number of snapshots , and to reject the noise by more
detailed decomposition. To generalize the WP-based DOA
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Fig. 1. MUSIC spatial spectrum for two signals with equal
power (SNR = -5 dB) from 8o and 10o by ten batches.
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Fig. 2. WP-MUSIC spatial spectrum for two signals with
equal power (SNR = -5 dB) from 8o and 10o by ten batches.

estimation methods, other high resolution algorithms, such
as ML, ESPRIT, and MEM, can be used.

The computation loads of classical MUSIC method are
due to two main parts, the decomposition of matrix (O(M3))
and the searching for the peaks (O(D3)), where M and D
are the numbers of sensors and plane waves respectively.
The computational advantage of WP-MUSIC is that it re-
duces the number of sensors to its half, and only adds a
small amount of computation loads of wavelet packet trans-
form. For the one-level D1 wavelet packets decomposition,
the added computation loads are only O(M). Even for the
l-level, the added computation loads are about O(M) +
2O(2−1M) + ... + 2l−1O(2−l+1M). The computation su-
periority of WP-MUSIC is obvious with easy validations.

3. SIMULATION RESULTS

In this section, we present some simulations to justify the
performance of proposed WP-MUSIC algorithm and com-
pare it with classical MUSIC algorithm. In both examples,
simulations is carried out according to signal model (2) for
a half wavelength spaced (d = λ/2) ULA with 32 sensors
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Fig. 3. Miss Ratio of MUSIC and WP-MUSIC vs. SNR for
two signals from 8o and 10o.
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Fig. 4. 10log(MSE) of MUSIC and WP-MUSIC vs. SNR
for two signals from 8o and 10o.

(M = 32), and the number of snapshots taken from the
array is 100 (N = 100). The mother wavelet used for WP-
MUSIC method is Daubechies’ D1 wavelet (the same as
Haar wavelet) for computations’ saving [11].

Example 3.1: Low SNR case
In the first example, the low SNR case (SNR = -5 dB)

is considered. Two plane waves at closely spaced directions
8o and 10o with equal power are impinging on the array.
Suppose a one-level wavelet packets decomposition and two
subbands yielded. By applying ten batches on the MU-
SIC and WP-MUSIC method, we obtain the spatial spec-
trums shown in Figs. 1 and 2, respectively. Five ones miss
presenting two dominant peaks corresponding to the DOAs
of the two waves in ten batches with the classical MUSIC
method, while all ten batches resolve two DOAs with WP-
MUSIC method. The capability of closed DOA resolving
in low SNR and small number of snapshots owes to the spa-
tial frequency spacing and SNR amplification. Figs. 3 and
4, presenting the performance of WP-MUSIC (the diamond
dashed line) upon classical MUSIC (the solid line) in the
sense of miss ratio and MSE versus SNR, are depicted by
100 Monte Carlo simulations. The superiorities of resolu-

II - 507

➡ ➡



0 10 20 30 40 50 60 70 80 90
−25

−20

−15

−10

−5

0

S
pe

ct
ra

l A
m

pl
itu

de
 (

dB
)

DOA (degree)

Fig. 5. MUSIC spatial spectrum for four signals with equal
power (SNR = 0 dB) at directions 8o, 25o, 37o, and 60o by a
two-level decomposition.

tion enhancing and noise rejecting of the supposed method
are obvious.

Example 3.2: Multiple waves case
A multiple waves case is chosen in the second example.

Four plane waves at directions 8o, 25o, 37o, and 60o with
equal power and SNR = 0 dB imping on the array. Fig. 5
depicts the spatial spectrum of the classical MUSIC method
applied on the source wave, in which four dominant peaks
corresponding to the DOAs are presented. Attracted by the
MSE’s decrease of all the estimations, a two-level wavelet
packets decomposition is performed on the source waves
and four subbands are yielded on the four leaf-nodes. In this
example, four subbands correspond to the best bases of the
wavelet packets tree. Fig. 6 shows the spatial spectrum of
our proposed WP-MUSIC method applied on each selected
best subband wave. Figs. 5 and 6 prove the validity of spa-
tial frequency decomposition by properly selecting the level
and the best bases.

4. CONCLUSION

The proposed WP-MUSIC method in this paper relies on
the spatial-temporal equivalence of the signal. The novel-
ties of WP-MUSIC are both savings in computation and im-
provement in resolution, especially in the scenarios of low
SNR and closely spaced spatial frequency. Moreover, WP-
MUSIC decomposes subbands much detailed to make full
use of the subband priorities. Computer simulations demon-
strate the validity of the proposed approach.
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