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ABSTRACT

The weighted low-rank approximation (WLRA) problem is con-
sidered in this paper. The problem is that of approximating one
matrix with another matrix of lower rank, such that the weighted
norm of the difference is minimized. The problem is fundamental
in a new method for reduced rank linear regression that is outlined
here, as well as in areas such as two-dimensional filter design and
data mining.

The WLRA problem has no known closed form solution in
the general case, but iterative methods have previously been sug-
gested. Non-iterative methods that are asymptotically optimal for
the linear regression and related problems are developed in this pa-
per. Computer simulations, where the new methods are compared
to one step of the well-known alternating projections algorithm,
show significantly improved performance.

1. INTRODUCTION

The weighted low-rank approximation (WLRA) problem for real
matrices is

min
C:rank{C}=r

V (C),

V (C) = vecT (Ψ − C)Qvec(Ψ − C) = ‖Ψ − C‖Q (1)

This means finding a rank r matrix C ∈ �m×n such that Ψ − C
is minimized under the weighting defined by the positive definite
(p.d.) matrix Q ∈ �mn×mn.

Problems of the form (1) appear in for example filter design.
In that context the main motivation is to find two one-dimensional
filters (vertical and horizontal) that as closely as possible approx-
imate a given two-dimensional filter response. The introduction
of a weighting matrix Q allows for a variable relative sensitivity
in different areas of the filter’s frequency response [1], [2]. Note,
however, that the weighting considered in that context is slightly
less general than the one considered here (corresponding to a diag-
onal Q). Diagonal weighting also appears in a data-mining context
in factor analysis of tabulated data [3].

In this paper it is shown how a WLRA can be used as a step in
a method for parameter estimation in reduced rank linear regres-
sions, allowing for a noise model with both temporal and spatial
correlation. The treated regression problem has applications in sig-
nal processing, econometrics and statistics.

There is no known closed form solution to (1) in the gen-
eral case. However, for certain classes of weighting matrices a
globally optimal solution can be found. One such class is where

Q = (Q1 ⊗ Q2) for some p.d. Q1 ∈ �n×n and Q2 ∈ �m×m,
for which the solution can be found via the singular value decom-
position [4]. An important specialization of this is the unweighted
case, Q = I .

For a general Q, iterative algorithms of Newton and steepest
descent type are developed in [4]. These methods typically require
tens of iterations for convergence to a (locally) minimal solution.
Another well-known algorithm is the alternating projections algo-
rithm, see e.g. [4].

In the following, non-iterative algorithms for the WLRA prob-
lem are developed under a small residual assumption. That is,

Ψ = C + X,

rank{C} = r (2)

where the elements of the matrix X are assumed to have small
magnitudes.

2. TWO ALGORITHMS FOR THE WLRA

Two one step Newton algorithms for the WLRA problem are de-
rived in this section. The methods are based on two different pa-
rameterizations of the criterion function V (C). For small enough
X , the minimizer of ‖Ψ − C‖Q under the rank constraint will be
arbitrarily close to the minimizer of ‖Ψ−C‖I . The optimal solu-
tion to the unweighted problem (Q = I) could therefore be used as
initial value. This means that higher order terms of a Taylor series
expansion of the criterion function can be ignored, and a Newton
algorithm will reach a stationary point in one step.

2.1. The one-step correction method

A standard way to capture the low-rank constraint is to introduce
the (non-unique) parameterization C = ABT , A ∈ �m×r, B ∈
�n×r , where both A and B are full rank matrices. A vectorized
version of this parametrization is

θA,B = [vecT (A) vecT (BT )]T = [aT bT ]T (3)

The criterion function to be minimized becomes

V (C) = V (θA,B) = vecT (Ψ − ABT )Qvec(Ψ − ABT ) (4)

Also let θ̂A,B be a parametrization of an initial estimate Ĉ =

ÂB̂T . In the following, a correction vector θ̃A,B is sought in order
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to minimize V (θ̂A,B + θ̃A,B). Performing a series expansion of
the gradient of the criterion function around θ̂A,B gives

0 =V ′(θ̂A,B + θ̃A,B)

=V ′(θ̂A,B) + V ′′(θ̂A,B)θ̃A,B + ε(θ̂A,B , θ̃A,B), (5)

If (2) is valid then the term ε(θ̂A,B , θ̃A,B) is small. The Newton
step (of minimum norm) is given by

θ̃A,B = −H+V ′(θ̂A,B), (6)

where H+ denotes the Moore-Penrose pseudo inverse of the rank
deficient asymptotic Hessian H that is defined below. The Hessian
and gradient are derived in Appendix A.1. They are

V ′′(θ̂A,B) � H = 2(B̂ ⊗ Im In ⊗ Â)T Q(B̂ ⊗ Im In ⊗ Â)

V ′(θ̂A,B) = 2(B̂ ⊗ Im In ⊗ Â)T Qvec(ÂB̂T − Ψ) (7)

where � denotes equality in the dominating terms (based on the
small residual assumption). Interestingly, the same update-equation
(6) is obtained if a quadratic approximation of the criterion func-
tion (4) is considered. Let θA,B = θ̂A,B + θ̃A,B . Then with
ψ = vec(Ψ):

V (A, B) = ‖Q1/2vec(Ψ − ABT )‖2
2 = ‖Q1/2(ψ − vec(ÂB̂T )

− vec(ÂB̃T ) − vec(ÃB̂T ) + vec(ÃB̃T )
)‖2

2

� ‖Q1/2(ψ − vec(ÂB̂T ) − vec(ÂB̃T )

− vec(ÃB̂T )
)‖2

2 ≡ Ṽ (Ã, B̃) (8)

The minimum norm minimizers of Ṽ (Ã, B̃) are given by (6).

2.2. Parameterizing the null-space of C

The main motivation for the next approach is to reduce the num-
ber of parameters to be updated, and thereby the computational
complexity. The algorithm derived here differs from one itera-
tion of the Newton algorithms presented in [4] in that the small
residual assumption (2) is used to make simplifications that reduce
the computational complexity drastically. The same underlying
criterion-function is used, however.

It is clear that minimizing (4) with respect to (w.r.t.) A gives
(for a fixed B)

am ≡ arg min
a=vec(A)

V (A, B)

= arg min
a

‖Q1/2ψ − Q1/2(B ⊗ Im)a‖2
2

=
(
(BT ⊗ Im)Q(B ⊗ Im)

)−1

(BT ⊗ Im)Qψ (9)

Inserting (9) into (4) and defining B̄ ≡ Q1/2(B ⊗ Im) yield

V (B) = ‖(Imn − B̄(B̄T B̄)−1B̄T )Q1/2ψ‖2
2 (10)

Now, define N ∈ �n×(n−r) to be a full column-rank matrix such
that NT B = 0 (⇒ CN = ABT N = 0) and N̄T = (NT ⊗
Im)Q−1/2. Then N̄T B̄ = 0 and Π⊥̄

B = ΠN̄
1. Thus

V (B) = ‖Π⊥̄
BQ1/2ψ‖2

2 = ‖N̄(N̄T N̄)−1N̄T Q1/2ψ‖2
2

= ψT Q1/2N̄(N̄T N̄)−1N̄T Q1/2ψ ≡ f(N) (11)

1ΠX = X(XT X)−1XT is the orthogonal projection matrix onto the
range space of X and Π⊥

X = I − ΠX is the orthogonal projection matrix
onto the null space of XT .

Given an N = N̂ minimizing f(N), it is easy to find the Ĉ mini-
mizing V (C). To that end, reconsider (9) and note that

vec(Ĉ) = Q−1/2 ˆ̄Bam = Q−1/2 ˆ̄B( ˆ̄BT ˆ̄B)−1 ˆ̄BT Q1/2ψ

= Q−1/2Π ˆ̄B
Q1/2ψ = Q−1/2Π⊥

ˆ̄N
Q1/2ψ

= ψ − Q−1/2 ˆ̄N( ˆ̄NT ˆ̄N)−1 ˆ̄NT Q1/2ψ (12)

This means that minimizing V (C) w.r.t. C is equivalent to min-
imizing f(N) w.r.t. N . The main advantage of the second ap-
proach is that the number of parameters to update typically is re-
duced compared to the first approach.

By using the same reasoning as in the section above it can be
concluded that one Newton step approximately will reach a sta-
tionary point.

The Hessian and gradient of the criterion function (11) are de-
rived and simplified, using the small residual assumption (2), in
Appendix A.2

f ′′(N̂) � H = 2(In−r ⊗ ĈT )( ˆ̄NT ˆ̄N)−1(In−r ⊗ Ĉ)

f ′(N̂) � 2(In−r ⊗ ĈT )( ˆ̄NT ˆ̄NT )−1N̄Q1/2ψ (13)

3. REDUCED RANK LINEAR REGRESSION

The problem considered is parameter estimation in the reduced
rank linear regression

y(t) = Cx(t) + e(t), (14)

where the matrix C ∈ �m×n has the known rank r and e(t) is
noise with zero mean, possibly with both temporal and spatial cor-
relation. The noise model employed here is therefore more general
than that of other methods, e.g. [5]. The noise and the input signal
x(t) are uncorrelated. The aim of the algorithm is to estimate C
based on the observed data {x(i), y(i)}M

i=1.
The algorithm will only be outlined here, a more thorough dis-

cussion, including asymptotical analysis and a comparison to other
methods such as those described in [5] and [6], is presented in [7].

A three step procedure, motivated by the extended invariance
principle [8], is used. The first step is an unconstrained least
squares fit of a matrix Ψ to the data:

Ψ =

(
1

M

M∑
t=1

y(t)xT (t)

) (
1

M

M∑
t=1

x(t)xT (t)

)−1

(15)

Insertion of (14) into this expression gives

Ψ = R̂yxR̂−1
xx = C + R̂exR̂−1

xx

lim
M→∞

R̂ex = 0, (16)

where the last equality holds with probability one (w.p. 1) and in
the mean-square sense. In the second step the covariance matrix
Qψ = E[vec(R̂ex)vecT (R̂ex)] of ψ is estimated. It is [7]

M2Qψ =E[
M∑

t=1

M∑
s=1

(R̂−1
xx x(t)xT (s)R̂−1

xx ⊗ e(t)eT (s))] (17)

As suggested in [9] and [10] a good approximation of Qψ , that is
guaranteed to be positive semi definite is

Q̂ψ =
1

M2

M∑
τ=−M

(M − |τ |)(R̂−1
xx R̂xx(τ)R̂−1

xx ⊗ R̂ee(τ)) (18)
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The noise autocorrelations can be estimated using the observed
data and Ψ [7]. Finally, the estimate of C is the solution to the
WLRA problem

Ĉ = arg min
C:rank{C}=r

‖Ψ − C‖
Q̂−1

ψ
(19)

Since the covariance of R̂ex tends to zero with increasing M , the
approximations made in the derivations of the Hessians will be
valid. As M increases the probability density function of Ψ will be
concentrated around C and the approximations made when omit-
ting higher order terms in the Taylor series expansions will hold.
The Newton methods presented in Section 2 are thus asymptoti-
cally optimal for the problem at hand.

4. SIMULATION STUDY

Monte Carlo-type simulations of the linear regression problem de-
scribed above are presented in this section.

The noise was generated by a generalized MA process

e(t) =

T−1∑
k=0

Mkw(t − k) (20)

where Mk ∈ �m×m are randomly generated matrices, each ele-
ment was drawn from a gaussian distribution with zero-mean and
unit variance. The process w(t) is gaussian white noise with co-
variance σ2

wI . The input signal, x(t), was generated similarly us-
ing sequences that are realizations of white gaussian noise pro-
cesses with covariance σ2

uI . Both the noise and the input signal
were regenerated in each Monte Carlo experiment. The coefficient
matrices Mk were kept constant throughout the experiments. The
covariance length T was fixed to 70 for both the noise and the in-
put signal. The SNR≡ σ2

u/σ2
w , was fixed to 20 while the size of

the data set M was varied. The rank one regression matrix was

C =

⎛
⎜⎝
−0.3634 −0.6984 0.1761 0.0838
−0.1058 −0.2033 0.0513 0.0244
−0.1415 −0.2719 0.0686 0.0326
−0.1539 −0.2957 0.0746 0.0355

⎞
⎟⎠ (21)

The results of the simulations are presented in Figure 1. The MSE
for the unconstrained least squares fit (Ĉ = Ψ) and for unweighted
rank reduction, obtained by setting Q̂ψ = I in (19), are also in-
cluded. Clearly, the two Newton methods perform very similarly.
The new methods perform better than one step of the alternating
projections method that was included for comparison. The empir-
ical estimate of the MSE2 reaches the asymptotical value also for
relatively small M which indicates that the new methods are very
well suited for the linear regression application.

5. CONCLUSIONS

Two new Newton-step methods were derived in order to find ap-
proximate solutions to the WLRA problem. As a step in a new
method for reduced rank linear regression these methods are asymp-
totically optimal. Computer simulations suggest that the new meth-
ods perform well also on practical sample set sizes. When com-
pared to one step of the alternating projections algorithm (which is
comparable in terms of computational complexity) the new meth-
ods give significantly improved performance.

2MSE=E[ 1
mn

‖C − Ĉ‖2
F ]

10
3

10
5

10
4

No rank reduction
unweighted rank reduction, Q=I
As. var. of new method
Newton step, AB formulation
Alternating projection, one step
Newton step, nullspace formulation

Results of Monte Carlo simulations

M
SE

Size of data set (M )

Fig. 1. Empirical MSE of the estimated linear regression matrices
for sample set sizes M ranging from 316 to 3162. The theoreti-
cal asymptotical variance for the regressor parameter estimator is
given by the solid line. Each point is averaged over 1500 indepen-
dent realizations. All methods were applied to the same data.

A. DERIVATION OF THE LIMITING HESSIANS

A.1. The first parameterization

In this section the gradient and Hessian of the criterion function
(4) are derived. The index A, B of θA,B will in the following be
dropped. The criterion function can be written as

V (θ) = ψT Qψ − aT (BT ⊗ Im)Qψ − ψT Q(B ⊗ Im)a

+ aT (BT ⊗ Im)Q(B ⊗ Im)a (22)

This immediately gives

∂V (θ)

∂a
= 2(BT ⊗ Im)Q

(
(B ⊗ Im)a − ψ

)
(23)

Performing parallel calculations for b = vec(BT ) gives the sought
gradient (7). The Hessian follows from the partial derivatives:

∂2V (θ)

∂a∂aT
= 2(BT ⊗ Im)Q(B ⊗ Im) (24)

∂2V (θ)

∂b∂bT
= 2(In ⊗ AT )Q(In ⊗ A) (25)

∂2V (θ)

∂b∂aT
= 2(

∂

∂b
(BT ⊗ Im))Qvec(ABT − Ψ)

+ 2(BT ⊗ Im)Q(In ⊗ A) (26)

According to assumption (2) the quantity Ψ − ABT = X will be
small close to the true value of A and B and (7) results.

A.2. The second parameterization

Here the gradient and Hessian of (11) will be derived. In order to
differentiate f(N̄), investigate the differential of N̄(N̄T N̄)−1N̄T :

dN̄(N̄T N̄)−1N̄T + N̄(N̄T N̄)−1dN̄T

− N̄(N̄T N̄)−1(dN̄T N̄ + N̄T dN̄)(N̄T N̄)−1N̄T (27)
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See [11] for the necessary relations. Then

df(N̄ , dN̄) =ψT Q1/2((Imn − N̄L−1N̄T )dN̄L−1N̄T

+ N̄L−1dN̄T (Imn − N̄L−1N̄T )
)
Q1/2ψ (28)

where L ≡ (N̄T N̄). Since the differential is a scalar function it is
clear that (28) can be written

df(N̄ , dN̄) =2ψT Q1/2dN̄L−1N̄T Q1/2ψ

− 2ψT Q1/2N̄L−1N̄T dN̄L−1N̄T Q1/2ψ (29)

In order to proceed define vec(D) ≡ L−1N̄T Q1/2ψ, D ∈ �m×(n−r)

and vec(F ) ≡ Q−1vec(DNT ), F ∈ �m×n. Also note that
dN̄ = Q−1/2(dN ⊗ Im). This gives

df(N ; dN) =2ψT (dN ⊗ Im)vec(D)

− 2vecT (D)(NT ⊗ Im)Q−1(dN ⊗ Im)vec(D)

=2
(
vecT (ΨT D) − vecT (F T D)

)
vec(dN) (30)

The identification theorem gives the gradient

f ′(N) = 2vec((Ψ − F )T D) = ∇f (31)

Proceeding to find the Hessian it is convenient to first calculate the
differentials of D and F

dvec(D) =L−1dN̄T Q1/2ψ − L−1(dN̄T N̄ + N̄T dN̄)vec(D)

=L−1(vec(ΨdN) − vec(FdN)

− (NT ⊗ Im)Q−1vec(DdNT )
)
,

dvec(F ) =Q−1vec(DdNT ) + Q−1vec(dDNT ) (32)

The differential of the gradient (31) is then

1

2
d∇f =(In−r ⊗ (ΨT − F T ))vec(dD) − (DT ⊗ In)vec(dF T )

=
(
(In−r ⊗ (ΨT − F T ))

− (DT ⊗ In)Km,nQ−1(N ⊗ Im)
)
vec(dD)

− (DT ⊗ In)Km,nQ−1(In ⊗ D)Kn,(n−r)vec(dN)
(33)

where Kx,y is the matrix satisfying Kx,yvec(X) = vec(XT ) for
any X ∈ �x×y . From (33) the Hessian can be found as

1

2
f ′′(N) =(In−r ⊗ (ΨT − F T ))L−1(In−r ⊗ (Ψ − F ))

+(DT ⊗ In)Km,nQ−1(N ⊗ Im)L−1

× (NT ⊗ Im)Q−1(In ⊗ D)Kn,(n−r)

−(In−r ⊗ (ΨT − F T ))L−1

× (NT ⊗ Im)Q−1(In ⊗ D)Kn,(n−r)

−(DT ⊗ In)Km,nQ−1

× (N ⊗ Im)L−1(In−r ⊗ (Ψ − F ))

−(DT ⊗ In)Km,nQ−1(In ⊗ D)Kn,(n−r) (34)

Using the small residual assumption (2) and (12) it can be noted
that:

vec(Ψ − F ) = ψ − vec(F ) � vec(C), (35)

Also, since CN̂ ≈ 0, it can be concluded that D ≈ 0. Thus the
asymptotic Hessian and gradient are given by (13).

B. REFERENCES

[1] D.J. Shpak, “A weighted-least-squares matrix decomposition
method with application to the design of two-dimensional
digital filters,” in Proceedings of the 33rd Midwest Sympo-
sium on Circuits and Systems, Aug 1990, pp. 1070–1073.

[2] S.-C Pei W.-S. Lu and P.-H Wang, “Weighted low-rank ap-
proximation of general complex matrices and its application
in the design of 2-d digital filters,” IEEE Transactions on
Circuits and Systems, vol. 44, no. 7, pp. 650–655, Jul. 1997.

[3] N. Srebro and T. Jaakkola, “Weighted low-rank approxima-
tions,” in Proceedings of the Twentieth International Confer-
ence on Machine Learning., 2003.

[4] R. Mahony J.H. Manton and Y. Hua, “The geometry of
weighted low-rank approximations,” IEEE Transactions on
Signal Processing, vol. 51, pp. 500–514, Feb. 2003.

[5] P. Stoica and M. Viberg, “Maximum likelihood parame-
ter and rank estimation in reduced-rank linear regressions,”
IEEE Transactions on Signal Processing, vol. 44, pp. 3069–
3078, Dec. 1996.

[6] T. Gustafsson and B. D. Rao, “Statistical analysis of
subspace-based estimation of reduced-rank linear regres-
sions,” IEEE Transactions on Signal Processing, vol. 50,
no. 1, pp. 151–159, Jan. 2002.

[7] K. Werner and M. Jansson, “Parameter estimation for
reduced-rank multivariate linear regressions in the presence
of correlated noise,” in Proceedings of Asilomar’03, Nov.
2003.

[8] P. Stoica and T. Söderström, “On reparameterization of loss
functions used in estimation and the invariance principle,”
Signal Processing, vol. 17, pp. 383–387, 1989.

[9] P. Stoica and M. Jansson, “Mimo system identification:
State-space and subspace approximations versus transfer
function and instrumental variables,” IEEE Transactions
on Signal Processing, vol. 48, no. 11, pp. 3087–3099, Nov.
2000.

[10] P. Stoica and M. Jansson, “Estimating optimal weights for
instrumental variable methods,” in Digital Signal Process-
ing, vol. 11, pp. 252–268. 2001.

[11] J. R. Magnus and H. Neudecker, Matrix Differential Calcu-
lus with Applications in Statistics and Econometrics, Wiley
Series in Probability and Mathematical Statistics. John Wiley
and Sons, 1988.

II - 504

➡ ➠


