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ABSTRACT

The complex signal of two dimensional harmonics is
common. And the pairing steps were always needed when 
we estimated the frequency pairs of harmonics which was 
described by complex signals. We introduced
hypercomplex signal in this paper, and used it to study two 
dimensional harmonics. First, we constructed
hypercomplex signal using the original two dimensional 
harmonics and its Hilbert transform. Then, we presented 
our algorithm of estimating frequencies of hypercomplex 
signal through taking advantage of the properties of
Hamilton’s quaternion. Some simulations illustrated the 
prospect of using hypercomplex signal in estimating
parameters of two dimensional harmonics without pairing 
steps.

1. INTRODUCTION

In many applications, such as radar, sonar and
communication, parameters estimation of two dimensional
harmonics was very important. In order to get high
resolutions estimation, many subspace methods of one 
dimensional harmonics, such as MUSIC, MEMP，ESPRIT,
have been developed to estimate parameters of two
dimensional harmonics[1][2][3]. 

When addit ive noise was colored Gaussian noise 
M.ibrahim[4] and R.R.Gharieb[5] analyzed this problem
with high-order cumulants since high-order cumulants is 
insensitive to any Gaussian noise.   In addition, Dou[6] 
presented special sixth-order moment to extract
frequencies of two dimensional harmonics in correlated 
multiplicative and additive noise. 

So far, pairing steps were needed directly or
indirectly in all of the algorithms of parameters estimation 
of two dimensional harmonics. Recently, hypercomplex has 
been used in image processing more and more popular [7]-
[12]. At the same time, Bulow, T. and Sommer, G. [13] 

extended the common complex signal to hypercomplex
signal for researching multi-dimensional signal. 

Section II, we constructed the hypercomplex signal 
of two dimensional harmonics and presented some
properties of Hamilton’s quaternion. Section III, the 
corresponding algorithm was presented to illustrate the 
theory.

2. SIGNAL MODEL AND HAMILTON’S QUATERNION

2.1. Signal model

Considering two dimensional harmonics model as:
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where, L represents the number of signal,
),( 21 ll ωω denotes the l th frequency pairs and

la represents amplitude. 
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where, )cos(4 21 nmab llll ωω += . We assumed that 

0≠lb . Then, equations (1) and (2) have the same 
frequency pairs.

The partial and total Hilbert transforms [15] of (2) 
were written as:
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where, ),( qpf P
H and ),( qpf Q

H were partial Hilbert
transforms along P and Q directions

respectively. ),( qpf T
H was total Hilbert transform.

Define hypercomplex model:
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If (6) was seen as Hamilton’s quaternion we could 
rewrite (6) as:
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2.2. Properties of Hamilton’s quaternion

The multiplication rules of Hamilton’s quaternion were
1−=== kkjjii ， kjiij =−=

and the conjugate e  of Hamilton’s quaternion
kdjcibae +++= was defined as:

kdjcibae −−−=
Meanwhile, we could get (8)-(12), which were similar 

to the famous Euler relations
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When )2/,2/( ππ−∈x , )2/,2/( ππ−∈y ,
)2/,2/(' ππ−∈x and )2/,2/(' ππ−∈y , it could 

be proved that if and only if 'xx = and 'yy = , equation
(13) existed

)exp()exp()exp()exp( '' jyixjyix =                    (13)
From (8)-(13), it could be illustrated that it was

possible to get the parameters of real two dimensional
harmonics through studying the corresponding  Hamilton 
quaternion.

3. ALGORITHM OF ESTIMATING FREQUENCY PAIRS

Assume that
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where, L represent the number of signal,
),( 21 ll ωω denotes the l th frequency pairs . Frequencies 

were mutually unequal  among l1ω , so did to l2ω
Let
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we knew that 012 ≡− RLYY λλ  since 

frequencies were mutually unequal  among l1ω and l2ω .
Since Hamilton’s quaternion doesn’t agree with the 

law of commutation of multiplication we didn’t use the 
common rules of general matrix to get the rank of
determinant.

Fortunately, Cheng [14] presented that Hamilton’s
quaternion matrix may be expressed by complex matrix. 
And the rank of determinant of quaternion is equal to half 
of the rank of determinant of complex matrix which is used 
to express the quaternion matrix.
       Assume that QeCbRa ∈∈∈ ,, , R represents real 

number field, C denotes complex field and Q represents
Hamilton’s quaternion field. The complex expression of 

Qkxjxixxx ∈+++= 3210 was defined as:
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The complex expression of Hamilton’s quaternion
matrix nm

ij Qa ×∈= )(A was defined as:
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The relation of the rank Hamilton’s quaternion matrix and
complex matrix is
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So, we could write RL λλ , as:
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 From 012 ≡− RLYY λλ  we could estima te

RL λλ , using general rule of calculation of complex matrix.

4. SIMULATION

we generated (14) with 2=L ,
121 == aa , )5.0,1(),( 2111 =ωω  and 

)1,5.0(),( 2212 −=ωω . Then, we took 2== NM
and constructed (15) and (16). It could be observed from 
figure (1) and figure (2) that the position of peaks were 
around )5.0,1( and )1,5.0(− .

5. CONCLUSION

This paper presented a new approach to estimate
frequency pairs of two dimensional harmonics. Algorithm 
and simulation illustrated that Hamilton’s quaternion was 
useful to avoid pairing steps in estimating frequencies of 
two dimensional harmonics. However, many problems
needed to be further investigation. For example, how to get 

RL λλ , directly through decomposition of Hamilton’s
quaternion matrix need further study.
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Fig. 1  Top view of extracting frequency pairs with Hamilton’s
quaternion

Fig. 2  three dimensional view of extracting frequency pairs with 
Hamilton’s quaternion
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